
PathSpotter: Exploring Tested Paths to Discover Missing Tests
Andre Hora

Department of Computer Science, UFMG
Belo Horizonte, Brazil
andrehora@dcc.ufmg.br

ABSTRACT
When creating test cases, ideally, developers should test both the
expected and unexpected behaviors of the program to catch more
bugs and avoid regressions. However, the literature has provided
evidence that developers are more likely to test expected behaviors
than unexpected ones. In this paper, we propose PathSpotter, a tool
to automatically identify tested paths and support the detection
of missing tests. Based on PathSpotter, we provide an approach to
guide us in detecting missing tests. To evaluate it, we submitted
pull requests with test improvements to open-source projects. As a
result, 6 out of 8 pull requests were accepted and merged in relevant
systems, including CPython, Pylint, and Jupyter Client. These pull
requests created/updated 32 tests and added 80 novel assertions
covering untested cases. This indicates that our test improvement
solution is well received by open-source projects.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Runtime environments.

KEYWORDS
software testing, test quality, runtime monitoring, python
ACM Reference Format:
Andre Hora. 2024. PathSpotter: Exploring Tested Paths to Discover Missing
Tests. In Companion Proceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering (FSE Companion ’24), July 15–
19, 2024, Porto de Galinhas, Brazil. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3663529.3663816

1 INTRODUCTION
Having a good test suite is fundamental to ensuring software quality
and sustainable software evolution [4, 10, 28]. When creating test
cases, developers should focus on testing both the expected and
unexpected behaviors of the program [2, 18, 24]. The expected
behavior represents the normal execution, in which nothing goes
wrong [18], while the unexpected behavior refers to the abnormal
execution. Test suites should ideally test both scenarios to catch
more bugs and protect against regressions [1, 15, 16, 28].

In practice, it is well-known that developers are more likely to
test expected behaviors than unexpected ones [2, 3, 5, 6, 8, 12, 17, 19,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663816

25, 26]. This happens because the expected behavior of the program
is often simpler to test. Another factor is that developers may lack
test expertise, focusing on only testing the “happy cases” [8].

In this paper, we propose PathSpotter, a tool to automatically
identify tested paths and support the detection of missing tests.
A tested path represents a set of input values that will make the
method behave in the same way.1 Based on PathSpotter, we provide
an approach to guide us in detecting missing tests. Particularly, we
propose to explore the most and least tested paths of a method to
reveal untested cases. To evaluate it, we improved the test suites of
real-world systems and submitted the changes via pull requests. As
a result, the approach successively guided us in improving the test
suites of relevant systems, including CPython, Pylint, and Jupyter
Client. We have 6 out of 8 pull requests accepted, created/updated
32 test methods, and added 80 novel assertions covering untested
cases. PathSpotter is publicly available at: https://github.com/and
rehora/pathspotter. Screencast: https://youtu.be/SeHewe34Q24.
Contributions. The contributions of this paper are twofold. First, we
provide PathSpotter, a tool to automatically identify tested paths
and support the detection of missing tests. (Section 3). Second, we
propose and evaluate an approach to improve test suites (Section 4).

2 MOTIVATION
A good test suite should work as a protection against regressions [1,
15, 16, 28]. Unfortunately, not all test suites work as real protection
against regressions because they may focus on expected behaviors
than unexpected ones [2, 3, 5, 6, 8, 12, 17, 19, 25, 26]. In this case,
ideally, developers should strive to improve their tests. Next, we
describe a real-world scenario of test improvement.

Consider the method cell_len (see Figure 1) of the popular
project Rich. This public method provides the number of cells re-
quired to display a text and has two behaviors: one for short texts
(i.e., < 512 characters, which uses cache) and the other for long
texts (i.e., ≥ 512 characters, which does not use cache).

Figure 1: Method cell_len of project Rich.

1Example: https://andrehora.github.io/tested_paths_dataset/report_html/calendar/
calendar.monthrange.html

https://orcid.org/0000-0003-4900-1330
https://doi.org/10.1145/3663529.3663816
https://doi.org/10.1145/3663529.3663816
https://github.com/andrehora/pathspotter
https://github.com/andrehora/pathspotter
https://youtu.be/SeHewe34Q24
https://andrehora.github.io/tested_paths_dataset/report_html/calendar/calendar.monthrange.html
https://andrehora.github.io/tested_paths_dataset/report_html/calendar/calendar.monthrange.html

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Andre Hora

As cell_len is a public API, ideally, both behaviors should be
tested. However, originally, only the long text behavior was directly
tested by Rich’s test suite, that is, there exists a test called test_-
cell_len_long_string dedicated to cover the long text behavior.
In contrast, there is no test focused on the short text behavior (its
lines of code are only indirectly covered by other tests, thus, the
line and branch coverage of method cell_len is 100%). Notice
that one important best practice in software testing recommends
that we focus on testing behaviors [28]. Thus, there is a missing
test dedicated to the short text behavior. In this case, we are left
with one question: how can we improve the tests of cell_len?
Unfortunately, we cannot rely on coverage metrics because method
cell_len has already 100% of line and branch coverage.

To overcome this problem, we propose an approach to improve
test suites based on the exploration of the tested paths. With the
support of PathSpotter, we explore themost and least tested paths of
a method to reveal possibly untested cases. Based on the proposed
approach, we improved the tests of Rich’s cell_len and submitted
the changes via pull request.

Our test improvement was accepted and merged in Rich (PR
2786), as presented in Figure 2. The original test covering the long
text behavior is presented in lines 4-6. We updated the existing test
to cover a boundary case (lines 7-8) and we created a new test to
cover the untested behavior (lines 11-15). In Section 4, we provide
more details about the proposed approach to improve tests.

Figure 2: PR 2786 accepted in Rich with the improved tests of
cell_len. Original test: lines 4-6. Improved tests: lines 7-15.

3 PATHSPOTTER
Figure 3 presents an overview of the technique that supports Path-
Spotter. First, we execute an instrumented version of the tests,
collecting call states from the execution traces (Section 3.1). Next,
based on the collected call states, we detect the tested paths (Sec-
tion 3.2) and compute the ranking of tested paths (Section 3.3).
Finally, Section 3.4 presents implementation notes.

Call states

Running tests &
Collecting call states

Input Detecting and Ranking the Tested Paths Output

Path 1: x calls

Path n: y calls

Ranking of
tested paths

Detecting the
tested paths

Test suite

Instrumented
tests

Source
code

Tested paths

Ranking the
tested paths

1

2

3

Figure 3: Overview of the technique to identify tested paths.

3.1 Running Tests and Collecting Call States
First, we need to run the test suite and collect relevant information
about the system execution. For this purpose, we execute an instru-
mented version of the test suite that monitors the tests and collect
data from the execution trace.

For each call of method𝑚, we collect its call state. A call state
𝑐𝑠𝑚 of method𝑚 is formed by: (1) the executed lines of code, (2) the
parameter values, (3) the return value, and (4) the thrown exception
if some exception happens during the call. We collect the executed
lines of code because they are the basis to compute tested paths.
We collect the inputs, outputs, and thrown exceptions because they
allow us to better understand the program’s behavior. After running
all tests, for each executed method𝑚, we have a set of call states.

3.2 Detecting the Tested Paths
A tested path of an executed method𝑚 is defined as a sorted set
of executed lines of code of𝑚. For each executed method𝑚, we
compute its tested paths based on its set of call states. A tested
path 𝑡𝑝𝑚 of method 𝑚 is formed by a triple: (1) unique lines of
code, (2) path frequency, and (3) path ratio. The unique lines of
code is computed as follows: for each call state 𝑐𝑠𝑚 of𝑚, we collect
the executed lines of code as a sorted set. We use a sorted set to
avoid line duplication due to the execution of loops, thus, lines that
are executed multiple times (due to loops) are counted once. The
path frequency and path ratio are simply the absolute and relative
frequencies of the tested path. As a result, we have a set of methods,
each with at least one tested path.

3.3 Ranking the Tested Paths
Lastly, for each method𝑚 with one or more tested paths 𝑡𝑝𝑚 , we
sort their paths in descending order of path frequency, creating
a ranking of tested paths. Thus, the most executed paths are top-
ranked, while the least executed ones are bottom-ranked.

3.4 Usage and Implementation Notes
3.4.1 Usage. PathSpotter implements the proposed technique to
detect and rank tested paths. PathSpotter also provides metrics
and code visualization to support understanding the tested paths
of a method, including the most and least tested paths as well as
their executed lines of code, inputs, outputs, and thrown exceptions.
It can be used by researchers and practitioners to comprehend,
maintain, create, and improve test cases.

Figure 4 presents an overview of PathSpotter. For a givenmethod,
it shows (1) the method overview and (2) the path details. The path
details present the tested paths sorted and contain (2.1) the path
frequency and ratio, (2.2) the path parameter values and their fre-
quency between parentheses, (2.3) the path return values and their
frequency, and (2.4) the executed path code. PathSpotter generates
HTML reports for the whole project (for example, calendar,2 csv,3
and gzip4), which provides reports for individual methods.

3.4.2 Implementation Notes. PathSpotter is implemented in Python
and targets Python systems. PathSpotter is implemented on the top

2calendar: https://andrehora.github.io/pathspotter/examples/report_html/calendar
3csv: https://andrehora.github.io/pathspotter/examples/report_html/csv
4gzip: https://andrehora.github.io/pathspotter/examples/report_html/gzip

https://github.com/Textualize/rich/pull/2786
https://github.com/Textualize/rich/pull/2786
https://andrehora.github.io/pathspotter/examples/report_html/calendar
https://andrehora.github.io/pathspotter/examples/report_html/csv
https://andrehora.github.io/pathspotter/examples/report_html/gzip

PathSpotter: Exploring Tested Paths to Discover Missing Tests FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

1. Method overview

2.2. Path parameter values

2.3. Path return values

2. Path details

2.4. Path code

2.1. Path frequency and ratio

Figure 4: Overview of PathSpotter.

of SpotFlow [14], a tool that supports runtime analysis of Python
programs.5 To instrument the test and collect runtime data, Spot-
Flow sets the test suite’s trace function [21, 23] and monitors events
(e.g., calls, line execution, etc.) to collect call states and to detect
and rank tested paths. The overhead added by SpotFlow is not
irrelevant [14] but is in line with similar runtime tools [9, 11].

4 DISCOVERING MISSING TESTS
Based on PathSpotter, we propose an approach to guide us in im-
proving test suites. tested paths. This approach has the following
steps: (1) detect the candidate method, (2) explore and understand
the tested paths, (3) identify relevant untested inputs and outputs,
(4) explore the tests that exercise the candidate method, and (5)
create/update the tests. Next, we detail and evaluate the approach.

4.1 Detect the Candidate Method
The first step is to spot the method that is candidate to be further
tested. One solution is to select methods with a low top n path ratio.
Those methods are likely to have infrequently tested paths, which
can potentially be a first source of exploration.
Example: As an example, we will analyze the method format-
weekday6 of the calendar Python Standard Library. This method
returns a formatted weekday based on the day and width argu-
ments and its top n path ratio is only 12%.

4.2 Explore and Understand the Tested Paths
Next, we explore and understand the tested paths of the candidate
method. For this purpose, we rely on PathSpotter (see Section 3.4
for more details) to identify and explore the tested paths as well as
the parameter and return values that cause the paths to be executed.
PathSpotter can be used to help developers identify equivalence
classes and their boundaries [1, 15, 20]. An equivalence class is a

5https://github.com/andrehora/spotflow
6https://github.com/python/cpython/blob/4fccf91/Lib/calendar.py#L323-L331

set of input values that will make the program behave in the same
way and it has boundaries with other equivalence classes [15].
Example: Figure 4 presents the tested paths of the method format-
weekday. This method has 74 calls and two paths: Path 1 with 65
calls (88%) and Path 2 with 9 calls (12%). Next, with the support of
PathSpotter, we explore the paths to better understand them.7

We can divide the inputs into two equivalence classes: (1) the
ones that return the abbreviated weekdays and (2) the ones that
return the non-abbreviated weekdays. First, we notice that Path 1
returns the abbreviated weekdays. The day parameter values range
from 0 to 6, representing the weekday (the value 0 happens 11 times,
while the other values happen 9 times). The width parameter values
are 2 and 5 (the value 2 happens 64 times and the value 5 happens
1 time). The return values are the abbreviated weekdays, like “Mo”
and “Tu”. The return value “Mo”, for example, happens 10 times.

Second, we observe that Path 2 represents a distinct behavior of
the method, returning the non-abbreviated weekdays. In this case,
the day values also range from 0 to 6, but the width values are 9
and 10. The return values are the non-abbreviated weekdays, from
“Monday” to “Sunday”.

4.3 Identify Untested Inputs and Outputs
After exploring and understating the tested paths, we rely on the
proposed tool to identify untested inputs and outputs. Specifically,
for each tested path, we assess the parameter and return values
and frequencies, looking for relevant untested cases, like boundary
values [1, 15]. Those untested cases are candidates to be tested.
Example: Consider the method formatweekday shown in Figure 4.
In Path 1 (the behavior that returns the abbreviated weekdays), the
width argument is tested only with 2 and 5, missing other values
like 1 (the smallest case) and 8 (the boundary case). We can also
detect untested values in the outputs. For example, in Path 1, we
see that the return values are strings with 2 or 3 characters, thus,
we could verify the case the return values have other sizes, like 1.

4.4 Explore the Tests that Exercise the
Candidate Method

Next, we identify the tests that exercise the candidate method with
the support of the proposed tool. Notice that one or more tests
may execute the candidate method, either directly or indirectly. We
explore those tests to reason about the need to create new tests (or
update existing ones) that cover the untested cases.
Example: Figure 4 shows that nine tests are exercising the method
formatweekday.We identify that the test test_locale_calendar_-
formatweekday is the one most focused on formatweekday, as pre-
sented in Figure 5. After exploring this test, we notice only three
calls to formatweekday (in lines 572, 574, and 576), which test, re-
spectively, the following width values: 5, 2, and 10. Recall that, in
the previous step, we identified at least two untested inputs that
could be tested for the argument width: 1 and 8.

Here, we spot another relevant input that is not tested: 9, which is
a boundary case for Path 2. Indeed, despite the value 9 is presented
in PathSpotter (see the width values of Path 2 in Figure 4), this case
is not covered by the target test.
7PathSpotter report for the method formatweekday: https://andrehora.github.io/path
spotter/examples/report_html/calendar/calendar.TextCalendar.formatweekday.html

https://github.com/andrehora/spotflow
https://github.com/python/cpython/blob/4fccf91/Lib/calendar.py#L323-L331
https://andrehora.github.io/pathspotter/examples/report_html/calendar/calendar.TextCalendar.formatweekday.html
https://andrehora.github.io/pathspotter/examples/report_html/calendar/calendar.TextCalendar.formatweekday.html

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Andre Hora

Table 1: Summary of the accepted pull requests and the candidate methods.

Accepted System Example of Created/Updated Tests Candidate Method Paths Calls Top 1 Path Top n Path
PR Freq. Ratio Freq. Ratio

3514 BentoML test_valid_runner_short_tag validate_tag_str 2 445 441 99.1% 4 0.9%

3521
BentoML test_rename_fields_remove_only rename_fields 5 311 289 92.9% 1 0.3%
BentoML test_invalid_load_config_file load_config_file 2 37 36 97.3% 1 2.7%
BentoML test_invalid_ip_address is_valid_ip_address 2 114 112 98.2% 2 1.8%

929 Jupyter Client test_parse_date_invalid parse_date 2 102 69 67.6% 33 32.4%
Jupyter Client test_extract_dates_from_dict extract_dates 4 119 91 76.5% 1 0.8%

2786 Rich test_cell_len_short_string cell_len 2 47,801 47,800 99.99% 1 0.01%
Rich test_pick_bool pick_bool 2 2,332 2,331 99.99% 1 0.01%

101378 CPython test_locale_calendar_formatweekday formatweekday 2 74 65 87.8% 9 12.2%

8159 Pylint test_unknown_keyword_with_missing_messages emit_pragma_representer 2 1,349 1,348 99.99% 1 0.01%

Figure 5: Test test_locale_calendar_formatweekday.

4.5 Create/Update the Tests
Finally, we improve the tests to cover the identified untested values.
We can update an existing test method in case there exists a test
covering the behavior.We can also create a new test method to cover
the untested values in case there is no test covering the behavior.
Example: Figure 6 presents the improved version of the test test_-
locale_calendar_formatweekday. We updated the existing test
to cover the identified inputs: 1, 3, 8, and 9. This test improve-
ment was submitted, accepted, and merged in the Python Standard
Library (CPython), as presented in PR 101378.

Figure 6: Improved version of the test test_locale_-
calendar_formatweekday (merged in CPython, PR 101378).

4.6 Evaluation
To evaluate the approach, we propose to improve the test suites
of seven relevant and real-world systems: CPython, Rich, Pylint,
Jupyter Client, BentoML, Flask, and The Fuck. The test improve-
ment was submitted to those projects via pull requests (PRs) in

GitHub and the author had no prior experience with the target
projects.We applied the approach described in Sections 4.1 to 4.5 un-
til we submitted 10 PRs (at most 2 pull requests per project to avoid
any perception of over-contribution). We recall that having changes
accepted to mature systems is not trivial [22]. Well-established
projects are more conservative in accepting PRs [7, 13, 27]. Thus,
PRs with low-priority contributions are unlikely to be accepted [7].

Finally, we submitted 10 PRs with test improvement and received
eight answers. Six out of eight PRs were accepted in BentoML (3514
and 3521), Jupyter Client (929), Rich (2786), CPython (101378), and
Pylint (8159). Overall, we created/updated 32 test methods and
added 80 novel assertions covering untested cases. The six accepted
PRs tested 10 distinct methods, as detailed in Table 1. Due to the
space limit, we briefly describe the accepted PRs in Pylint and Rich.

Pylint: PR 8159 created a test for emit_pragma_representer.
This method parses code pragmas and verifies if they are well-
formed. It has 1,349 calls, but the bottom path has only one. This
allowed us to identify onemissing test for an invalid pragma pattern,
leading to the test_unknown_keyword_with_missing_messages.

Rich: PR 2786 improved three tests of two methods. In both
methods, the bottom paths are rarely executed: 1 out of 47,801 calls
in cell_len and 1 out of 2,332 calls in pick_bool. First, we focused
on method cell_len, which returns the number of cells required to
display a text (see Figure 2). The second method is pick_bool; we
improved its existing test by covering untested cases, particularly
when the list passed as a parameter has exactly one element.
Not accepted pull requests: Two PRs were not accepted. In Pylint
(8188), the maintainer explained that the tested code was stable.
In Flask (4957), we tested a method via the CLI (command-line
interface), but the maintainer suggested testing the method directly.

5 CONCLUSION
In this paper, we presented PathSpotter, a tool to automatically
identify tested paths and support the detection of missing tests. The
proposed tool has successively guided us in detecting missing tests.
Overall, we have 6 out of 8 accepted PRs, created/updated 32 test
methods, and added 80 novel assertions covering untested cases.
As future work, we plan to evaluate PathSpotter with developers
in tasks related to test compression and improvement.

ACKNOWLEDGMENT
This research is supported by CNPq, CAPES, and FAPEMIG.

https://github.com/bentoml/BentoML/pull/3514
https://github.com/bentoml/BentoML/pull/3521
https://github.com/jupyter/jupyter_client/pull/929
https://github.com/Textualize/rich/pull/2786
https://github.com/python/cpython/pull/101378
https://github.com/pylint-dev/pylint/pull/8159
https://github.com/python/cpython/pull/101378
https://github.com/python/cpython/pull/101378
https://github.com/bentoml/BentoML/pull/3514
https://github.com/bentoml/BentoML/pull/3521
https://github.com/jupyter/jupyter_client/pull/929
https://github.com/Textualize/rich/pull/2786
https://github.com/python/cpython/pull/101378
https://github.com/pylint-dev/pylint/pull/8159
https://github.com/pylint-dev/pylint/pull/8159
https://github.com/Textualize/rich/pull/2786
https://github.com/pylint-dev/pylint/pull/8188
https://github.com/pallets/flask/pull/4957

PathSpotter: Exploring Tested Paths to Discover Missing Tests FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

REFERENCES
[1] Maurício Aniche. 2022. Effective Software Testing: A developer’s guide. Simon and

Schuster.
[2] Maurício Aniche, Christoph Treude, and Andy Zaidman. 2021. How develop-

ers engineer test cases: An observational study. IEEE Transactions on Software
Engineering 48, 12 (2021), 4925–4946.

[3] Gina R Bai, Justin Smith, and Kathryn T Stolee. 2021. How students unit test: Per-
ceptions, practices, and pitfalls. In ACM Conference on Innovation and Technology
in Computer Science Education. 248–254.

[4] Kent Beck. 2003. Test-driven development: by example. Addison-Wesley Profes-
sional.

[5] Lex Bijlsma, Niels Doorn, Harrie Passier, Harold Pootjes, and Sylvia Stuurman.
2021. How do students test software units?. In International Conference on Soft-
ware Engineering: Software Engineering Education and Training. IEEE, 189–198.

[6] Adnan Causevic, Rakesh Shukla, Sasikumar Punnekkat, and Daniel Sundmark.
2013. Effects of negative testing on TDD: An industrial experiment. In Interna-
tional Conference on Agile Processes in Software Engineering and Extreme Program-
ming. Springer, 91–105.

[7] Valerio Cosentino, Javier L Cánovas Izquierdo, and Jordi Cabot. 2017. A system-
atic mapping study of software development with GitHub. IEEE Access 5 (2017),
7173–7192.

[8] Stephen H Edwards and Zalia Shams. 2014. Do student programmers all tend
to write the same software tests?. In Conference on Innovation & technology in
Computer Science Education. 171–176.

[9] Aryaz Eghbali and Michael Pradel. 2022. DynaPyt: a dynamic analysis frame-
work for Python. In ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 760–771.

[10] Michael Feathers. 2004. Working Effectively with Legacy Code. Prentice Hall
Professional.

[11] Cormac Flanagan and Stephen N Freund. 2010. The RoadRunner dynamic anal-
ysis framework for concurrent programs. In SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering. 1–8.

[12] Vahid Garousi and Barış Küçük. 2018. Smells in software test code: A survey of
knowledge in industry and academia. Journal of Systems and Software 138 (2018),
52–81.

[13] Vincent J Hellendoorn, Premkumar T Devanbu, and Alberto Bacchelli. 2015. Will
they like this? evaluating code contributions with language models. InWorking
Conference on Mining Software Repositories. IEEE, 157–167.

[14] Andre Hora. 2024. SpotFlow: Tracking Method Calls and States at Runtime. In
International Conference on Software Engineering. 1–5.

[15] Cem Kaner, Sowmya Padmanabhan, and Douglas Hoffman. 2013. The Domain
Testing Workbook. Context Driven Press.

[16] Vladimir Khorikov. 2020. Unit Testing Principles, Practices, and Patterns. Simon
and Schuster.

[17] Laura Marie Leventhal, Barbee M Teasley, Diane S Rohlman, and Keith Instone.
1993. Positive test bias in software testing among professionals: A review. In
International Conference on Human-Computer Interaction. Springer, 210–218.

[18] Gerard Meszaros. 2007. xUnit test patterns: Refactoring test code. Pearson Educa-
tion.

[19] Rahul Mohanani, Iflaah Salman, Burak Turhan, Pilar Rodríguez, and Paul Ralph.
2018. Cognitive biases in software engineering: a systematic mapping study.
IEEE Transactions on Software Engineering 46, 12 (2018), 1318–1339.

[20] Thomas J. Ostrand and Marc J. Balcer. 1988. The category-partition method for
specifying and generating fuctional tests. Commun. ACM 31, 6 (1988), 676–686.

[21] Python sys.settrace. November, 2023. https://docs.python.org/3/library/sys.html
#sys.settrace.

[22] Mohammad Masudur Rahman and Chanchal K Roy. 2014. An insight into the
pull requests of github. InWorking Conference on Mining Software Repositories.
364–367.

[23] Giles Reger and Klaus Havelund. 2016. What is a trace? A runtime verification
perspective. In International Symposium on Leveraging Applications of Formal
Methods. Springer, 339–355.

[24] Stuart C Reid. 1997. An empirical analysis of equivalence partitioning, boundary
value analysis and random testing. In International Software Metrics Symposium.
IEEE, 64–73.

[25] Iflaah Salman, Burak Turhan, and Sira Vegas. 2019. A controlled experiment on
time pressure and confirmation bias in functional software testing. Empirical
Software Engineering 24, 4 (2019), 1727–1761.

[26] Barbee E Teasley, LauraMarie Leventhal, Clifford RMynatt, and Diane S Rohlman.
1994. Why software testing is sometimes ineffective: Two applied studies of
positive test strategy. Journal of Applied Psychology 79, 1 (1994), 142.

[27] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of social and tech-
nical factors for evaluating contribution in GitHub. In International Conference
on Software Engineering. 356–366.

[28] Titus Winters, Hyrum Wright, and Tom Manshreck. 2020. Software Engineering
at Google: Lessons Learned from Programming over Time.

Received 2024-01-29; accepted 2024-04-15

https://docs.python.org/3/library/sys.html#sys.settrace
https://docs.python.org/3/library/sys.html#sys.settrace

	Abstract
	1 Introduction
	2 Motivation
	3 PathSpotter
	3.1 Running Tests and Collecting Call States
	3.2 Detecting the Tested Paths
	3.3 Ranking the Tested Paths
	3.4 Usage and Implementation Notes

	4 Discovering Missing Tests
	4.1 Detect the Candidate Method
	4.2 Explore and Understand the Tested Paths
	4.3 Identify Untested Inputs and Outputs
	4.4 Explore the Tests that Exercise the Candidate Method
	4.5 Create/Update the Tests
	4.6 Evaluation

	5 Conclusion
	References

