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ABSTRACT
As software systems grow, test suites may become complex, mak-
ing it challenging to run the tests frequently and locally. Recently,
Large Language Models (LLMs) have been adopted in multiple soft-
ware engineering tasks. It has demonstrated great results in code
generation, however, it is not yet clear whether these models un-
derstand code execution. Particularly, it is unclear whether LLMs
can be used to predict test results, and, potentially, overcome the
issues of running real-world tests. To shed some light on this prob-
lem, in this paper, we explore the capability of LLMs to predict
test results without execution. We evaluate the performance of the
state-of-the-art GPT-4 in predicting the execution of 200 test cases
of the Python Standard Library. Among these 200 test cases, 100
are passing and 100 are failing ones. Overall, we find that GPT-4
has a precision of 88.8%, recall of 71%, and accuracy of 81% in the
test result prediction. However, the results vary depending on the
test complexity: GPT-4 presented better precision and recall when
predicting simpler tests (93.2% and 82%) than complex ones (83.3%
and 60%). We also find differences among the analyzed test suites,
with the precision ranging from 77.8% to 94.7% and recall between
60% and 90%. Our findings suggest that GPT-4 still needs significant
progress in predicting test results.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.
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1 INTRODUCTION
Software testing is a key practice in modern software development.
Developers rely on tests to avoid regressions and ensure sustainable
software evolution [1, 9, 10, 17]. One important benefit of software
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testing is to provide fast feedback when evolving the system. For ex-
ample, if any regression is inserted into the system, by continuously
running the tests, developers can quickly detect and fix it [2].

Over time, as software systems grow, test suites may become
complex, making it challenging to run the tests frequently and
locally, on the developer’s machine. For instance, the Pip project
requires multiple heavy dependencies to run successively: “Running
pip’s entire test suite requires supported version control tools (sub-
version, bazaar, git, and mercurial) to be installed”.1 Similarly, the
CPython testing documentation states the challenges of properly
running its test suite: “There could be platform-specific code that
simply will not execute for you, errors in the output, etc”.2 The Ray
project documentation about tests also highlights its complexity:
“The full suite of tests is too large to run on a single machine”.3

To overcome these issues, a common approach is to execute the
tests in CI/CD servers or containers, which can handle multiple
operating systems, platforms, and dependencies [3, 7, 15]. Due to
the benefit of these environments, developers rely on them to run a
variety of tests, from simpler ones (e.g., unit tests) to more complex
tests (e.g., e2e tests). One drawback of running the tests on such
environments is that they may not provide fast feedback, which
is fundamental when developing new features or fixing bugs [2].
Another limitation is that such environments are commonly com-
mercial products, thus, developers may be subjected to billing (or
usage limits). In this context, it would be inestimable and un-
precedented for software engineering to have the possibility
to predict test results without actually executing test suites,
bypassing any challenge that may exist during test run.

Recently, Large Language Models (LLMs) have been adopted
in multiple software engineering tasks [4, 6, 11, 13, 16]. Particu-
larly, it has demonstrated great results in code generation [4, 14],
however, it is not yet clear whether these models understand code
execution [16]. A recent study performed by Microsoft researchers
evaluated the capability of LLMs in understanding code execution
by exploring code coverage prediction tasks, that is, determining
which lines of a method are executed based on a given test case [16].
The study evaluated four state-of-the-art LLMs (OpenAI’s GPT-4
and GPT3.5, Google’s BARD, and Anthropic’s Claude). The results
demonstrated that GPT-4 achieved the highest performance, with
24.48% in the best-tested scenario, suggesting that LLMs still have a
long way to go in predicting code coverage. However, it is unclear
whether LLMs can be used to predict test results, and, potentially,
overcome the issues of running real-world tests.

To shed some light on this problem, in this paper, we explore
the capability of LLMs to predict test results without execution. We
analyze the state-of-the-art GPT-4 because it has the best results

1https://pip.pypa.io/en/latest/development/getting-started/#running-tests
2https://devguide.python.org/testing/coverage
3https://docs.ray.io/en/master/getting-involved.html#testing
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in code coverage prediction [16]. Specifically, we evaluate the per-
formance of GPT-4 in predicting the execution of 200 test cases of
the Python Standard Library. Among these 200 test cases, 100 are
passing and 100 are failing ones.

To evaluate the prediction, we propose the following research
question: what is the performance of GPT-4 to predict test results?
Overall, we find that GPT-4 has a precision of 88.8%, recall of 71%,
and accuracy of 81% in the test result prediction. The results vary
depending on the test complexity: GPT-4 presented better preci-
sion and recall when predicting simpler tests (93.2% and 82%) than
complex ones (83.3% and 60%). We also find differences among the
analyzed test suites, with the precision ranging from 77.8% to 94.7%
and recall between 60% and 90%. Our findings suggest that GPT-4
still needs significant progress in predicting test results. However,
GPT-4 provided better results for test results prediction than for
code coverage prediction [16].
Contributions. The contributions of this are threefold: (1) we provide
the first study to analyze test result prediction with LLMs; (2) we
discuss actionable implications; and (3) we make our dataset with
200 test cases publicly available for further studies.

2 STUDY DESIGN
2.1 Selecting Test Cases
In this study, we aim to study test cases provided by real-world
test suites. For this purpose, we analyze test cases of the Python
Standard Library.4 We selected Python because it is among the most
popular programming languages nowadays. The Python Standard
Library was selected because its code base and documentation are
among the training sources of GPT-4, therefore, its model is “aware”
of this library and its inner workings.

We inspected the test suites of five important libraries (ast, cal-
endar, csv, gzip, and string) and selected two test cases per library,
totaling 10 unique test cases, as presented in Table 1. During this
process, for each library, we took special care to select one simpler
and one more complex test to assess the performance of GPT-4 in
predicting test results in tests with distinct levels of complexity.

Table 1: Selected test cases.

Library Test Case Complexity

ast test_AST_objects Complex
test_positional_only_feature_version Simple

calendar test_locale_calendar_formatweekday Complex
test_january Simple

csv test_read_linenum Complex
test_write_simple_dict Simple

gzip test_bad_params Complex
test_fileobj_mode Simple

string test_format_keyword_arguments Complex
test_basic_formatter Simple

Next, for each test case, we manually modified it to create 10
passing tests and 10 failing tests, totaling 200 test cases (100 passing
4https://docs.python.org/3/library/index.html

and 100 failing ones). To create the passing tests, we modified
the inputs or outputs with distinct but valid data. Similarly, to
create the failing tests, we modified the inputs or outputs with
invalid data. For example, Figure 1a presents the original test case
test_basic_formatter5 of the string library. Figure 1b presents
a modified passing version and Figure 1c shows a modified failing
version. Note that both passing and failing versions contain different
inputs/outputs when compared to the original test. The passing
version is modified in line 7 with the valid input "foo{0}{0}-{1}"
and its output "foobarbar-6". The failing one is modified in line
5 with the incorrect output " foo ", i.e., with extra blank spaces.

(a) Original test case.

(b) Passing test version (modified line 7).

(c) Failing test version (modified line 5).

Figure 1: Test test_basic_formatter of the string library.

2.2 Creating Prompts and Assessing Answers
We select OpenAI’s GPT-4 because it is state-of-the-art in code
generation [14] and it has the best results in code coverage pre-
diction [16]. The prompt used to evaluate GPT-4 in the test result
prediction was provided in a natural language description of the
task (as presented in Figure 2) and was inspired by a related Mi-
crosoft research [16]. Notice that we provided the exact Python
version (3.10) in which the test result is supposed to be predicted.

We created a prompt for each test case and submitted them to
GPT-4. Next, we read the prompt answers to assess the test result
prediction. In most of the cases, the results were directly reported
by GPT-4 as a passing or failing test. For example, Figure 3a presents
an example in which GPT-4 directly reported that the submitted
test case will fail, while Figure 3b presents an example in which
GPT-4 reported a passing test case.

5https://github.com/python/cpython/blob/3.10/Lib/test/test_string.py#L34
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Consider the following test of the Python Standard

Library , version 3.10:

<test_case >

Your job is to figure out whether this test will pass or

fail. If it fails , provide the rationale.

Figure 2: Test result prediction prompt.

[...]

In summary , the test will fail due to the second case

where the test incorrectly checks that the newly set

attribute `foobar ` is not equal to `42`.

(a) Predicted failing test.

[...]

Given the above analysis , the test should pass without

any failures.

(b) Predicted passing test.

Figure 3: Examples of prompt answers.

2.3 Evaluation: Precision, Recall, and Accuracy
Table 2 summarizes the confusion matrix adopted in our prediction
task. Notice that when running test cases, we want them to fail
when there is some problem in the tests themselves or in the SUT.
Therefore, a true positive (TP) represents a correctly predicted
failing test case, while a false positive (FP) represents an incorrectly
predicted failing test case (that is, a “wrong alert”). A true negative
(TN) represents a correctly predicted passing test case, while a false
negative (FN) represents an incorrectly predicted passing test case
(that is, a “missing alert”).

Table 2: Confusion matrix of test result prediction.

Actual Test Result
Pass Fail

Predicted Test Result Pass TN FN
Fail FP TP

We evaluate the performance of test result prediction tasks by
computing precision, recall, and accuracy. We compute the pre-
cision of GPT-4 in correctly detecting failing test cases, looking
for true positives and false positives; precision = TP/(TP+FP). We
compute the recall to verify whether GPT-4 is possibly missing
to detect failing tests, i.e., the false negatives; recall = TP/(TP+FN).
Lastly, we compute the accuracy, which is the number of correct
predictions (that is, true positives and true negatives) divided by
the total number of predictions; accuracy = TP+TN/(TP+TN+FP+FN).

To evaluate the prediction, we provide the following research
question: what is the performance of GPT-4 to predict test results?.
We consider (RQ1) all test cases, (RQ2) test case complexity, and
(RQ3) test suite? In the first analysis, we explore all 200 test cases. In
the second analysis, we divide the tests into two groups according
to their complexity: 100 simpler tests and 100 more complex tests.

Lastly, we divide the tests into five groups according to their test
suite (i.e., ast, calendar, csv, gzip, and string), each group with 40
test cases. Our dataset with the 200 test cases as well as the GPT-4
prompts and their answers is publicly available at: https://github.c
om/andrehora/predicting-test-results-gpt-4.

3 RESULTS
3.1 RQ1: Prediction for All Test Cases
Table 3 presents the confusion matrix for the 200 test result predic-
tion tasks (100 passing tests and 100 failing tests). Overall, we note
a large number of false negatives (29) and a few false positives (9).
Regarding the correct predictions, we note 71 true positives and 91
true negatives.

Table 3: Summary of test result prediction.

Actual Test Result
Pass Fail

Predicted Test Result Pass 91 (TN) 29 (FN)
Fail 9 (FP) 71 (TP)

Table 4 details the precision, recall, and accuracy. Overall, when
considering all test cases, we find that GPT-4 has a precision of
88.8%, recall of 71%, and accuracy of 81% in the test result prediction.
The overall precision close to 90% indicates that GPT-4 makes a
wrong prediction one time for every 10 test runs. Notice that the
overall recall is low (71.0%), indicating that GPT-4 frequently misses
to detect real failing tests. Finally, the accuracy at 81% shows that
GPT-4 provides 4 out of 5 correct predictions.

Table 4: Performance test result prediction.

Tests Precision Recall Accuracy

All 88.8% 71.0% 81.0%

Simple 93.2% 82.0% 88.0%
Complex 83.3% 60.0% 74.0%

ast 94.7% 90.0% 92.5%
csv 93.8% 75.0% 85.0%
gzip 92.3% 60.0% 77.5%
calendar 85.7% 60.0% 75.0%
string 77.8% 70.0% 75.0%

Summary RQ1. Overall, GPT-4 has a precision of 88.8%,
recall of 71%, and accuracy of 81% in the test result pre-
diction. This means that unnoticed failing tests (i.e., false
negatives) are more problematic than miss-detected failing
tests (i.e., false positives).

3.2 RQ2: Prediction by Test Case Complexity
Table 4 details the results according to the test case complexity.
In this analysis, we notice that the results vary depending on the
test complexity. Interestingly, GPT-4 presented better performance
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when predicting simpler tests (precision: 93.2%, recall: 82%, accu-
racy: 88%) than complex ones (precision: 83.3%, recall: 60%, accuracy:
74%). This means that the simpler the test case, the easier to predict
the test result. However, it is important to note that, even for the
simpler tests, the performance is far from the ideal 100% of accuracy.

Summary RQ2. GPT-4 presented better precision, recall,
and accuracy when predicting simpler tests than complex
ones. However, the results are still far from 100%, meaning
that even for simpler tests the results are not satisfactory.

3.3 RQ3: Prediction By Test Suite
We also find differences among the five analyzed test suites (i.e., ast,
calendar, csv, gizp, and string). None of the test suites presented
100% accuracy. In this analysis, the precision ranged from 77.8% to
94.7% and recall was between 60% and 90%. The best results hap-
pened for the test suite of the ast library, with a precision of 94.7%,
recall of 90%, and accuracy of 92.5%. In contrast, the worst result
happened for the test suites of the calendar and string libraries,
both with an accuracy of 75%. Our findings suggest that GPT-4 may
present a large variation in the test prediction results depending
on the domain of the analyzed test suites.

Summary RQ3. GPT-4 presented differences among the
analyzed test suites, with the precision ranging from 77.8%
to 94.7% and recall between 60% and 90%.

4 DISCUSSION AND OBSERVATIONS
Overall, GPT-4 has a precision of 88.8%, recall of 71%, and accuracy
of 81% in the test result prediction. Moreover, GPT-4 presented
better precision and recall when predicting simpler tests (93.2% and
82%) than complex ones (83.3% and 60%). We also find differences
among the analyzed test suites, with the precision ranging from
77.8% to 94.7% and recall between 60% and 90%. Our findings suggest
that GPT-4 still needs significant progress in predicting test results.
However, the results are significantly higher than the ones obtained
in code coverage prediction [16]. We hope that our results highlight
the need for improvement in LLMs regarding the understanding
of code execution. Further studies may replicate our test result
prediction task for other programming languages and test suites.

To better understand the reasons for the false positives and false
negatives, we provide some observations:
Correct analysis but incorrect conclusions. In some cases, we
find that GPT-4 provided the correct explanation (rationales) for a
passing or failing test, however, the final verdict was incorrect.
Reliance on comments rather than on test code. We also find
cases in which GPT-4 seems to be relying on the code comments
rather than the test code itself to support the prediction. This is a po-
tential problem because comments may be wrong or outdated [12].
Explanations based “general knowledge” (rather than on
code). In some cases, GPT-4 provided explanations based on “gen-
eral knowledge” to complement the rationales. For example, for
the test test_positional_only_feature_version, an answer in-
cluded: “The feature of positional-only parameters was introduced
in Python 3.8. This means that using this feature in versions before

3.8 should raise a ‘SyntaxError‘”. Despite this being true, this is not
necessarily the behavior that is actually implemented in the SUT.
Non-deterministic test results. We have not explored non deter-
minism, but we noticed that in rare cases GPT-4 changed the test
result when executing the same prompt again. This can be a poten-
tial research direction for further studies to better understand to
what extent the test results are consistent over multiple executions.

5 THREATS TO VALIDITY
Data sources. In practice, GPT-4 may rely on multiple sources to
classify the test results, such as source code (production and test),
documentation, and general knowledge that is available on the web.
This may be a source of noise for our study since we would be
interested in source code only. However, we recall that the Python
Standard Library was selected because its code base and documen-
tation are among the training sources of GPT-4.
Generalization of the results. We analyzed real-world Python test
cases and GPT-4 because it is state-of-the-art in code generation
and code coverage prediction [14, 16]. Despite these observations,
our findings may not be directly generalized to other projects or
other programming languages.

6 RELATEDWORK
LLMs have been adopted in multiple software engineering tasks [4,
6, 11, 13, 16]. Particularly, it has demonstrated great results in code
generation [4, 14], however, it is not yet clear whether these mod-
els understand code execution [16]. A recent study performed by
Microsoft researchers evaluated the capability of LLMs in under-
standing code execution by exploring code coverage prediction
tasks, that is, determining which lines of a method are executed
based on a given test case [16]. The authors evaluated four state-of-
the-art LLMs (OpenAI’s GPT-4 and GPT3.5, Google’s BARD, and
Anthropic’s Claude). The results presented that GPT-4 achieved
the highest performance, with 24.48% in the best-tested scenario.
In our study, we explored the capability of GPT-4 to predict test
results without execution. We show that GPT-4 still needs progress
in predicting test results, however, GPT-4 provided better results
for test results prediction than for code coverage prediction [16].
Test result prediction has been previously explored [5, 8], but not
in the context of LLMs.

7 CONCLUSION
In this paper, we explored the capability of LLMs in predicting test
results. We evaluated the performance of GPT-4 in predicting the
execution of 200 test cases (100 passing and 100 failing ones.) of
the Python Standard Library. Overall, we found that GPT-4 has a
precision of 88.8%, recall of 71%, and accuracy of 81% in the test
result prediction. Moreover, GPT-4 presented better precision and
recall when predicting simpler tests than complex ones.

As future work, we plan to extend this research to other program-
ming languages and test suites.We also plan to perform a qualitative
analysis of the LLMs answers to get more detailed insights about
the false positives and negatives.
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