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ABSTRACT
Positive tests (aka, happy path tests) cover the expected behavior of
the program, while negative tests (aka, unhappy path tests) check
the unexpected behavior. Ideally, test suites should have both pos-
itive and negative tests to better protect against regressions. In
practice, unfortunately, we cannot easily identify whether a test is
positive or negative. A better understanding of whether a test suite
is more positive or negative is fundamental to assessing the overall
test suite capability in testing expected and unexpected behaviors.
In this paper, we propose test polarity, an automated approach to
detect positive and negative tests. Our approach runs/monitors the
test suite and collects runtime data about the application execu-
tion to classify the test methods as positive or negative. In a first
evaluation, test polarity correctly classified 117 tests as as positive
or negative. Finally, we provide a preliminary empirical study to
analyze the test polarity of 2,054 test methods from 12 real-world
test suites of the Python Standard Library. We find that most of the
analyzed test methods are negative (88%) and a minority is positive
(12%). However, there is a large variation per project: while some
libraries have an equivalent number of positive and negative tests,
others have mostly negative ones.
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1 INTRODUCTION
Positive tests (also known as happy path, sunny day, and good
weather tests) cover expected behaviors of the program, that is, the
normal execution, in which nothing goes wrong [20]. In contrast,
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Figure 1: Test class MonthRangeTestCase of the calendar
Python Standard Library. Positive test: . Negative test: .

negative tests (also known as unhappy path and bad weather tests)
check unexpected behaviors, that is, the abnormal execution, like
exceptional cases. Ideally, test suites should have both positive and
negative tests to catch more bugs, protect against regressions, and
ensure sustainable software evolution [1, 4, 9, 15, 16, 27].

For example, consider the test class MonthRangeTestCase1 pre-
sented in Figure 1, which tests method monthrange2 of the calendar
Python Standard Library. This method computes the number of
days in a given month and throws an exception when the month is
invalid. Fortunately, the tests have comments with hints on what
cases they are verifying. For instance, test_january and test_-
december are testing valid cases, that is, the expected months 1 (for
January) and 12 (for December). Similarly, test_february_leap
and test_february_nonleap also test valid cases, i.e., February
in leap and non-leap years. In contrast, test_zeroth_month and
test_thirteenth_month are testing invalid cases, that is, the un-
expectedmonths 0 and 13. Lastly, test_illegal_month_reported
checks another invalid input, as its name properly suggests. Based
on the test names, comments, and code, if we could flag those

1https://github.com/python/cpython/blob/92ed7e4/Lib/test/test_calendar.py#L877
2https://github.com/python/cpython/blob/92ed7e4/Lib/calendar.py#L161
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tests as positive or negative, we would possibly classify the first
four tests as positive and the last three tests as negative. The fact
that the class MonthRangeTestCase has both positive and negative
tests is an indication that it has good protection against regres-
sions [1, 4, 9, 15, 16, 27].

In practice, unfortunately, we cannot easily identify whether a
test is positive or negative. One solution would be to rely on the
test names and comments (like in the presented example). However,
test methods face the same issues of application method names,
that is, they are often poorly named, with generic, meaningless, and
obsolete names [16, 18, 27]. Another solution would be to inspect
the test code itself. That would work for simple tests (like in the
presented example), however, real-world test suites may be complex
and large, with thousands of test methods. In addition, that would
require developers with expertise on the subject. Therefore, it is
not feasible to confidently rely on test names, comments, or code
to properly detect positive or negative tests.

To the best of our knowledge, there is no approach to detect
positive and negative tests in a simple and explainable way. Better
understanding whether a test suite is more positive or negative is
fundamental to (i) assess the overall test suite capability in testing
expected and unexpected behaviors and (ii) have actionable data to
improve the tests. If a test suite is over-concentrated on positive
tests, while neglecting the negative ones, this may suggest that
unexpected behaviors are not being properly tested. On the other
hand, if a test suite only focuses on negative tests, this may suggest
that the expected behaviors are not covered.

In this paper, we propose test polarity, an automated approach to
detect positive and negative tests. Our approach runs/monitors the
test suite and collects runtime data about the application execution
to classify the test methods as positive or negative. We evaluate test
polarity by assessing its precision in correctly classifying the tests
as positive or negative. For this purpose, we manually classified
117 test methods and our automated approach correctly classified
all 117 test methods.

Finally, we provide an initial empirical study to analyze the test
polarity of 2,054 tests from 12 real-world test suites of the Python
Standard Library.We find that most of the analyzed test methods are
negative (88%) and a minority is positive (12%). However, there is a
large variation per project: while some libraries have an equivalent
number of positive and negative tests, others have mostly negative
ones. Our results are publicly available at: https://doi.org/10.5281/
zenodo.10149477.
Contributions. The contributions of this paper are threefold. First,
we propose test polarity, an automated approach to detect positive
and negative tests (Section 2). Second, we provide an evaluation of
test polarity (Section 3). Third, we provide a preliminary empirical
study of test polarity on real-world test suites (Section 4).

2 TEST POLARITY
Test polarity is an automated approach to detect positive and neg-
ative tests. It runs the test suite and collects runtime data about
the application execution to classify the test methods as positive
or negative. Specifically, it has three major steps, as summarized
in Figure 2. First, it identifies the tested paths of each application
method and ranks them according to their execution frequency,

creating a ranking of tested paths. Second, for each test method, it
detects which tested paths are executed and their respective posi-
tion in the ranking. Finally, it classifies each test method as positive
or negative based on the ranking position of their tested paths.
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Figure 2: Overview of the test polarity approach.

2.1 Identify and Rank Tested Paths
First, we run and monitor the test suite of the target application. In
this process, we collect application methods executed by the test
suite as well as their respective tested paths. A tested path represents
a set of input values that will make the method behave in the same
way, that is, execute the same lines of code. We define a tested path
of an executed method𝑚 as a sorted set of executed lines of code
of𝑚. This definition makes the paths computable and comparable.
For example, after running the test suite of test_calendar3 of the
Python Standard Library, two tested paths are identified in method
monthrange (Figure 3): Tested Path 1 with lines {164, 166, 167, 168},
which represents the “normal” execution, and Tested Path 2 with
lines {164, 165}, which represents the “abnormal” execution, when
an exception is thrown.

Figure 3: Method monthrange of the Python Standard Library.

Next, for each application method, we rank their tested paths
according to their call frequency, creating a ranking of tested paths.
In this ranking, the most called paths are top-ranked, while the
least called ones are bottom-ranked. For example, the ranking of
tested paths for method monthrange is: (1st) Tested Path 1 with 218
calls and (2nd) Tested Path 2 with 3 calls, as summarized in Table 1.

Table 1: Ranking of tested paths (monthrange).

Pos Path Lines of Code Calls

1 Tested Path 1 164, 166, 167, 168 218
2 Tested Path 2 164, 165 3

3https://github.com/python/cpython/blob/92ed7e4/Lib/test/test_calendar.py
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2.2 Detect Tested Paths of Test Methods
Next, for each test method, we identify which application methods
are executed. Then, we detect which tested paths are called and
their respective position in the ranking of tested paths.

For example, the test method test_january of MonthRange-
TestCase (see Figure 1) execute two application methods: month-
range and weekday. Method monthrange has two tested paths (as
we have seen in the previous step). Method weekday also has two
tested paths (Tested Path 1 with 193 calls and Tested Path 2 with 25
calls). Specifically, the test method test_january calls the Tested
Path 1 of monthrange and the Tested Path 1 of weekday. On the
other hand, the test method test_illegal_month_reported exe-
cutes only one application method: monthrange. However, differ-
ently from test_january, the test method test_illegal_month_-
reported calls the Tested Path 2 of monthrange. Table 2 summa-
rizes the tested paths of the test methods in MonthRangeTestCase.

Table 2: Test methods and tested paths (MonthRangeTestCase).

Test Methods Tested Paths
monthrange weekday

test_january TP1 TP1
test_february_leap TP1 TP1
test_february_nonleap TP1 TP1
test_december TP1 TP1
test_zeroth_month TP2 -
test_thirteenth_month TP2 -
test_illegal_month_reported TP2 -

2.3 Classify Tests as Positive or Negative
The final step is to compute the polarity of the test methods, that is,
classify the test methods as positive or negative. For this purpose,
we rely on the ranking position of their tested paths. Test methods
that always execute the top-ranked tested paths are classified as
positive, otherwise, they are classified as negative. The rationale is
that the top-ranked tested path represents the “happy path”, i.e., the
normal behavior of the method [20]. This way, if a test method
always stays on the happy path, it can be seen as a positive test. In
contrast, if a test method deviates from the happy path, it can be
seen as a negative test. Section 3 provides a detailed evaluation of
the proposed approach.

For example, test_january calls two top-ranked tested paths
(i.e., TP1 of monthrange and TP1 of weekday), thus, it is classified
as positive (%TP1 is 100%). In contrast, test_illegal_month_-
reported calls a non-top-ranked tested path (i.e., TP2 of month-
range), thus, it is classified as negative (%TP1 is 0%). Table 3 sum-
marizes the polarity in MonthRangeTestCase.

2.4 Implementation Notes
We developed a tool that implements the proposed test polarity
approach. This tool is implemented in Python and targets Python
systems. Our tool is implemented with the support of the standard
trace function [22, 24], which is the basis for performing runtime
analysis in Python [12, 13]. Our solution relies on SpotFlow [14], a
tool to ease runtime analysis in Python.4

4https://github.com/andrehora/spotflow

Table 3: Summary of the test polarity (MonthRangeTestCase).

Test Methods Tested Paths %TP1 Polarity

test_january TP1, TP1 100%
test_february_leap TP1, TP1 100%
test_february_nonleap TP1, TP1 100%
test_december TP1, TP1 100%
test_zeroth_month TP2 0%
test_thirteenth_month TP2 0%
test_illegal_month_reported TP2 0%

3 PRELIMINARY EVALUATION
3.1 Design
To evaluate test polarity, we assess its precision in correctly clas-
sifying the tests as positive or negative. For this purpose, we ana-
lyze real-world test suites of 12 libraries provided by the Python
Standard Library: gzip, email, calendar, ftplib, collections, os, tarfile,
pathlib, logging, smtplib, argparse, and configparser. Those libraries
are fundamental to building any Python application, allowing it to
handle emails, logging, operating systems, collections, etc.

In total, test polarity classified 2,054 test methods and we ran-
domly selected 324 (i.e., 95% confidence level and 5% confidence in-
terval) to perform a manual analysis. For each selected test method,
we manually inspected their source code and manually classified
it as positive (when it only verified valid and expected cases) or
negative (when it verified invalid, unexpected, and exceptional
cases). In both cases, we considered test names, test comments,
variable names, exception raising, references to issues, and any
available resources to manually classify the test method. In case of
unclear polarity, we did not classify the test method. Finally, we
verified whether test polarity correctly classified the test methods
as positive or negative taking the manual classification as an oracle.

3.2 Results
Among the 324 randomly selected test methods, we could manually
classify 117 (112 negatives and 5 positives), while 207 test methods
had unclear polarity (the high rate of tests with unclear polarity
reinforces the need for an automated approach, like test polarity).
Our automated approach correctly classified all 117 test methods.
Negative tests. Overall, the negative tests checked exceptional
or edge cases. For example, the gzip test test_bad_gzip_file5
(Figure 4) was manually classified as negative because it verifies
the creation of an invalid gzip file. Our approach classified this test
as negative because it executed five bottom-ranked tested paths.
As another example of correctly classified negative test, the email
test test_long_lines6 verifies multiple edge cases of the parse
function, like long strings with carriage return separator, newline
separator, and special characters.
Positive tests. Positive tests were harder to manually classify than
negative ones because exceptional and edge cases are easier to
spot in the test. Figure 5 presents a positive test in the collections

5https://github.com/python/cpython/blob/97ce15c5/Lib/test/test_gzip.py#L428
6https://github.com/python/cpython/blob/97ce15c5/Lib/test/test_email/test_email.p
y#L3625
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Figure 4: Negative test in gzip (test_bad_gzip_file).

library. The test test_match_args7 checks if the __match_args__
attribute of Point contains the correct field names x and y. This test
executes the top-1 tested path of namedtuple, thus, it is classified
as positive. As another example of a correctly classified positive test,
test_april8 of calendar checks the number of days in April given
different starting days of the week. In this case, the test executes
the top-1 tested paths of monthrange and weekday.

Figure 5: Positive test in collections (test_match_args).

4 PRELIMINARY EMPIRICAL STUDY
RQ: What is the test polarity of real-world test suites? We compute
the test polarity of the 12 Python libraries presented in Section 3
and the results are summarized in Figure 6. Overall, we find more
negative tests than positive ones: considering the 2,054 analyzed test
methods, 88% are negative, while 12% are positive. However, there
is a large variation per library. The libraries with the most positive
tests are ftplib (51%), os (47%), and calendar (40%). In contrast, gzip
and smtplib have only negative tests. Indeed, well-established and
critical projects (like the Python Standard Library) are likely to be
formed by experienced developers [7, 11, 26], who are more likely
to test unexpected/unhappy cases [2, 17, 21, 25].

ftplib
os

calendar
collections

pathlib
email

configparser
logging

tarfile
argparse

gzip
smtplib

all

0.00 0.25 0.50 0.75 1.00
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Figure 6: Test polarity of Python libraries.

Table 4 presents examples of negative and positive tests on each
library. Notice that some negative tests contain words like bad, ille-
gal, error, empty, null, issue, debug, and limits, which is an indication
7https://github.com/python/cpython/blob/97ce15c5/Lib/test/test_collections.py#L69
5
8https://github.com/python/cpython/blob/97ce15c5/Lib/test/test_calendar.py#L743

that they are indeed checking exceptional cases. In contrast, some
positive test names are neutral or have words like valid, safe, and
basic. Further studies need to be performed to better explore not
only the negative tests but also the positive ones. For example, we
can apply sentiment analysis [19] on the test names and compare
them with our test polarity classification.

Table 4: Examples of negative and positive tests.

Library Negative Test Positive Test

argparse test_bad_type test_open_args
calendar test_illegal_weekday_reported test_april
collections test_new_builtins_issue_43102 test_field_doc
configparser test_parsing_error test_safeconfigparser_deprecation
email test_decode_null_word test_get_msg_id_valid
ftplib test_parse257 test_login
gzip test_bad_params -
logging test_with_valueerror_in_close test_filename
os test_bad_pathlike test_items
pathlib test_glob_empty_pattern test_match
smtplib test_debuglevel -
tarfile test_number_field_limits test_basic

Summary: Most of the analyzed test methods are negative
(88%) and a minority is positive (12%). However, there is a
large variation per project: while some libraries have an
equivalent number of positive and negative tests, others
have mostly negative ones. Contrary to prior findings sug-
gesting that developers are likely to focus on positive tests,
we find no test suite that is monopolized by positive tests.

5 RELATEDWORK
Overall, the literature shows that developers are more likely to test
the expected behaviors and avoid the unexpected ones [2, 3, 5, 6, 8,
10, 17, 21, 23, 25]. For example, in an experiment with developers,
Teasley et al. [25] found evidence of using a positive test strategy
(i.e., testing the expected behavior), which was partially mitigated
by increasing the expertise of the developers. Indeed, studies show
that only experienced developers are more prone to test unexpect-
ed/unhappy cases [2, 17, 21, 25]. Moreover, the literature shows
that “happy path testing” is considered a test smell that should be
avoided [10], but there is no approach to automatically detect this
smell. Our study sheds light on the polarity of real-world test suites
with an automated solution to detect positive and negative tests.

6 CONCLUSION AND FURTHER STUDIES
This paper proposed and evaluated test polarity, an automated
approach to detect positive and negative tests. We also provided a
preliminary empirical study, which analyzed 2,054 test methods of
12 Python libraries.We found thatmost of the analyzed testmethods
are negative (88%) and a minority is positive (12%), however, there
was a large variation per project. Our initial research opens room for
novel empirical studies in software testing to better understand the
polarity of real-world systems. Moreover, more research is needed
to manually classify the tests with unclear polarity.
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