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ABSTRACT
The literature has provided evidence that developers are likely to
test some behaviors of the program and avoid other ones. Despite
this observation, we still lack empirical evidence from real-world
systems. In this paper, we propose to automatically identify the
tested paths of a method as a way to detect the method’s behaviors.
Then, we provide an empirical study to assess the tested paths
quantitatively. We monitor the execution of 14,177 tests from 25
real-world Python systems and assess 11,425 tested paths from
2,357 methods. Overall, our empirical study shows that one tested
path is prevalent and receives most of the calls, while others are
significantly less executed. We find that the most frequently exe-
cuted tested path of a method has 4x more calls than the second
one. Based on these findings, we discuss practical implications for
practitioners and researchers and future research directions.
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• Software and its engineering→ Software testing and debug-
ging; Runtime environments.
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1 INTRODUCTION
Ideally, developers should test multiple behaviors (e.g., expected and
unexpected ones) of the program to catch more bugs and protect
against regressions [1, 2, 16, 17, 20, 23, 26]. In practice, it is well-
known that developers are more likely to test some behaviors than
others [2–4, 6, 7, 10, 18, 21, 24, 25]. This happens because some
behaviors of the program are often simpler to test. Another factor
is that developers may lack test expertise, naively focusing on only
testing the “happy cases” (aka, confirmation bias) [7].
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Although the literature has provided evidence that some behav-
iors (e.g., the expected ones) are more likely to be tested than others
(e.g., the unexpected ones), existing research is mostly restricted to
controlled experiments, like case studies with students and develop-
ers [2, 6, 7, 24, 25]. For example, in an experiment conducted with
students, they were found to naively test the “happy cases” [7]. In
an experiment with developers, Teasley et al. [25] found evidence
of using a positive test strategy, which was partially mitigated
by increasing the expertise of the developers. While those results
are insightful and bring to light relevant findings, they are not
supported by real-world settings. We still lack empirical evidence
extracted from real-world software systems and their test suites.

To illustrate a real-world scenario, consider the email1 library
provided by the Python Standard Library. Figure 1 presents method
email.message.Message.get,2 which returns the value of a named
header field. Notice this method has for and if blocks, which may
lead to three behaviors at runtime: (i) entering in both the for and
if blocks, (ii) entering in the for block and not in the if block, and
(iii) not entering in the for block. At this point, it is unclear what
behaviors are the most and least frequently tested by developers.

Figure 1: Method email.message.Message.get provided by
the Python Standard Library.

After monitoring the test suite of the email library,3 we find that
this method is executed 13,396 times. These executions lead to three
tested paths, as detailed in Figure 2. What is interesting is the large
discrepancy between the execution frequency of different paths.
Path 1 concentrates most of the calls (70.9%), Path 2 receives 24.7%
of the calls, and Path 3 receives only 4.4%. This brings to light one
important question: are tested paths of real-world software systems
likely to concentrate calls (as in the presented example) or do calls
tend to be more distributed among the tested paths?
1https://docs.python.org/3/library/email.html
2https://github.com/python/cpython/blob/5cd9c6b1fca549741828288febf9d5c132938
47d/Lib/email/message.py#L494-L504
3https://github.com/python/cpython/tree/5cd9c6b1fca549741828288febf9d5c132938
47d/Lib/test/test_email
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(a) Path 1: 9,503 calls (70.9%)

(b) Path 2: 3,305 calls (24.7%) (c) Path 3: 588 calls (4.4%)

Figure 2: Tested paths of email.message.Message.get (green:
executed lines; red: not executed lines).

To the best of our knowledge, no study aims to gauge the exe-
cution frequency of different tested paths of a method. This infor-
mation could provide insights for developers to improve existing
test suites and support the creation of novel testing tools to better
understand test suites. Moreover, it may reveal novel empirical data
for researchers to quantify the difference between the execution
frequency of distinct paths in real-world software systems.

In this paper, we propose an empirical study to assess the tested
paths quantitatively. A tested path represents a set of input values
that will make the method behave in the same way, that is, execute
the same lines of code. We monitor the execution of 14,177 tests
from 25 real-world Python systems, assessing 11,425 tested paths
from 2,357 methods. We seek to answer two research questions:

• RQ1: What is the frequency of the most tested paths? We find
that in methods with multiple tested paths, one tested path
tends to receive most of the calls. Overall, the most tested
path of a method has 4x more calls than the second one.

• RQ2: What is the frequency of the least tested paths? We find
that the most tested path of a method has 6.5x more calls
than the top 3+.

Overall, our empirical study shows that one tested path (i.e., one
method behavior) is prevalent and receives most of the calls, while
others are significantly less executed. Based on our findings, we
discuss practical implications for practitioners and researchers.

Contributions. The contributions of this paper are twofold. First, we
provide an empirical study to quantitatively assess the tested paths
of a method (Sections 4). Second, we propose practical implications
for practitioners and researchers (Section 5).

2 DETECTING TESTED PATHS
This section describes a technique to identify and rank the tested
paths of a method. First, we execute an instrumented version of
the tests, collecting the executed lines of code at method-level
(Section 2.1). Next, we detect the tested paths (Section 2.2) and
compute the ranking of tested paths (Section 2.3). Finally, Section 2.4
briefly presents the tool that implements the proposed technique.

2.1 Collecting Executed Lines of Code
First, we need to run the test suite and collect relevant information
about the system execution. For this purpose, we execute an instru-
mented version of the test suite that monitors the tests and collect
data from the execution trace. Specifically, for each call of method
𝑚, we collect its executed lines of code. After running all tests, each
executed method𝑚 has a set of executed lines of code.

2.2 Detecting the Tested Paths
A tested path represents a set of input values that will make the
method behave in the same way, that is, execute the same lines of
code. We define a tested path of an executed method𝑚 as a sorted
set of executed lines of code of𝑚. For example, method email.-
message.Message.get presented in Figure 2 has three tested paths.

For each executed method𝑚, we compute its tested paths based
on its set of executed lines of code. A tested path 𝑡𝑝𝑚 of method𝑚 is
formed by a triple: (1) unique lines of code, (2) path frequency, and
(3) path ratio. The unique lines of code is computed as follows: for
each call of𝑚, we collect the executed lines of code as a sorted set.
We use a sorted set to avoid line duplication due to the execution of
loops, thus, lines that are executed multiple times (due to loops) are
counted once. The rationale is that a loop that iterates on the same
lines one or multiple times are equivalent; without this constraint,
a method with a loop could potentially mislead to multiple yet
equivalent paths. The path frequency and path ratio are simply the
absolute and relative execution frequencies of the tested path. As a
result, we have a set of methods, each with at least one tested path.

2.3 Ranking the Tested Paths
Lastly, for each method𝑚 with one or more tested paths 𝑡𝑝𝑚 , we
sort their paths in descending order of path frequency, creating
a ranking of tested paths. Thus, the most executed paths are top-
ranked, while the least executed ones are bottom-ranked.

2.4 Implementation Notes
We developed PathSpotter [14], a tool implements the proposed
technique to detect and rank tested paths.4 To extract the tested
paths, we need to run an instrumented version of the test suite, mon-
itoring the execution and collecting call information. PathSpotter re-
lies on SpotFlow [15], a tool that perform runtime analysis in Python
to collect the target information, such as executed lines of code at
method level.5 In short, this tool is implemented with the support
of the standard system’s trace function sys.settrace [22], which
is the basis for performing runtime analysis in Python [12, 13].

3 STUDY DESIGN
3.1 Selecting Software Systems
We aim to study relevant and real-world software systems. Thus, we
select Python systems that are largely adopted. Table 1 presents the
25 selected systems, which have 5,371 executed methods and 14,177
test methods. To have a larger diversity of projects, we select two
types of systems: (1) real-world systems and (2) Python libraries.

4https://github.com/andrehora/pathspotter
5https://github.com/andrehora/spotflow
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Table 1: Selected systems.

Name Short Description Methods Tests

DateUtil date and time library 241 2,029
TheFuck console error corrector 550 1,887
Pylint static code analyzer 1,537 1,822
Rich rich text library 589 758
Requests HTTP library 174 578
Flask web framework 284 478
Cookiecutter template handler 66 322
Six compatibility library 32 199
BentoML machine learning platform 319 169
Jupyter Client Jupyter protocol client APIs 138 87

argparse command-line interfaces 126 1,685
email email message manager 381 1,666
tarfile tar reading and writing 89 496
pathlib OO filesystem paths 97 449
configparser configuration file parser 82 341
os operating system interfaces 41 316
logging logging facility 215 208
csv CSV reading and writing 15 113
collections datatype container 112 111
imaplib IMAP4 protocol client 47 103
ftplib FTP protocol client 51 94
smtplib SMTP protocol client 43 82
calendar calendar helpers 63 72
gzip gzip reading and writing 32 61
difflib diff library 47 51

Total 5,372 14,177

Real-world systems. The 10 selected systems presented at the top of
Table 1 have thousands of GitHub stars, millions of clients, and, in
some cases, billions of downloads, which highlights their relevance.
Python libraries.We also analyze the 15 libraries presented at the
bottom of Table 1, which belong to the Python Standard Library
and are hosted on the CPython repository. These libraries are fun-
damental to building virtually every Python application.

3.2 Selecting Methods
Table 1 shows that the systems have 5,372 executedmethods. Among
those methods, we find that 175 are generators, i.e., methods that
contain yield expressions. As this feature is absent in most pro-
gramming languages, we filtered out generators. Moreover, we are
interested in methods with multiple tested paths. We find 2,840
methods with only one tested path, which are also filtered out.

Finally, we selected 2,357 methods (i.e., 5,372 – 175 – 2,840). The
2,357 selected methods have a total of 11,425 tested paths and are
executed 13.3 million times by the tests. The median of tested paths
per method is 3 (the first quartile is 2 and the third quartile is 5),
while the median of calls per method is 107 (the first quartile is 16
and the third quartile is 956). Our dataset is publicly available at:
https://github.com/andrehora/tested_paths_dataset.

3.3 Research Questions
3.3.1 RQ1: Frequency of the most tested paths. We explore the
tested paths that are most executed. We compare the path ratio
distribution of the top 1 and the top 2 tested paths in three config-
urations: (i) all selected methods, (ii) methods with two or three
tested paths, and (iii) methods with four or more tested paths.

3.3.2 RQ2: Frequency of the least tested paths. While RQ1 focuses
on the top-ranked tested paths, RQ2 focuses on the bottom-ranked
ones. We compare the tested paths that are most executed (i.e., the

top 1) against the ones with fewer calls (i.e., the top 3+). The top 3+
tested paths represent the top 3 and the other paths combined.

3.3.3 Rationales for RQ1 and RQ2. Prior studies have presented
evidence that one behavior is likely to be more tested than the
others [2, 6, 7, 24, 25]. However, we lack quantitative evidence from
real-world software systems. We aim to fill this gap in the literature.

4 STUDY RESULTS
4.1 RQ1: Frequency of the most tested paths
Overall results: Table 2 presents the path ratio median for the
top 1 and the top 2 tested paths in the selected methods. We notice
that the top 1 tested paths are fairly more called than the top 2,
independently of the number of paths. The difference between all
distributions is statistically significant in all comparisons for the
Mann-Whitney test (MWT), with a large effect for the Cohen test.6

On the median, the top 1 tested paths receive 72% of the calls
(the first quartile is 53% and the third quartile is 92%), while the top
2 tested paths receive only 17% of the calls (the first quartile is 6%
and the third quartile is 31%).

Table 2: Top 1 vs. top 2 path ratios.

Number Path ratio (median) MWT Cohen
of paths Top 1 (%) Top 2 (%) p-value effect size

2 83 17 <0.01 large
3 73 18 <0.01 large
4 66 20 <0.01 large
5 67 17 <0.01 large
6 65 18 <0.01 large
7 60 18 <0.01 large
8 64 15.5 <0.01* large
9 53 18 <0.01* large

10+ 53 17 <0.01 large

all (≥ 2) 72 17 <0.01 large

Finding 1: Overall, one tested path tends to receive most
of the calls. The most tested path of a method has 4x more
calls than the second one.

Methods with two or three tested paths: Next, we focus only on
the methods with two or three tested paths. In methods with two
tested paths , the top 1 tested paths receive 83% of the calls, while
the top 2 tested paths receive 17%, on the median. This represents
close to 5x more calls in the top 1 than in the top 2. Similarly, in
methods with three tested paths, the top 1 is also dominant (73% of
the calls), the top 2 is less frequently called (18%), and the top 3 is
rarely called (4%).

Finding 2: In methods with two tested paths, one path
tends receive close to 5x more calls than the second one. In
methods with three tested paths, one path receives most
of the calls (73%), while the third path is rarely called (4%).

Methods with four or more tested paths: Finally, we analyzed
methods with four or more tested paths. Table 2 shows that the
6In methods with 8 and 9 tested paths, the Mann-Whitney test cannot be computed
with confidence due to the data size in both RQ1 and RQ2.
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path ratio difference is also large for the methods with four or
more tested paths. For example, in methods with four tested paths,
the top 1 tested paths receive 66% of the calls, while the top 2
tested paths have 20%, on the median. Interestingly, even in highly
complex methods with 10 or more tested paths, one path tends to
be dominant. In this case, the top 1 tested paths have 53% of the
calls, while the top 2 tested paths have 17%.

Finding 3: Even methods with four or more tested paths
have one path that receives the majority of the calls. In
this case, the top 1 ranges from 53% to 67%, while the top
2 is between 15.5% and 20%.

4.2 RQ2: Frequency of the least tested paths
Table 3 details the path ratio median for the top 1 tested paths
and the top 3+ tested paths (i.e., tested paths with fewer calls).
Overall, the top 1 tested paths are largely more called than the top
3+, independently of the number of paths. The difference between
both distributions is statistically significant for the Mann-Whitney
test (MWT), with a large effect for the Cohen effect size.

Table 3: Top 1 vs. top 3+ path ratios.

Number Path ratio (median) MWT Cohen
of paths Top 1 (%) Top 3+ (%) p-value effect size

3 73 4 <0.01 large
4 66 7 <0.01 large
5 67 11 <0.01 large
6 65 12.5 <0.01 large
7 60 19 <0.01 large
8 64 15.5 <0.01* large
9 53 19 <0.01* large

10+ 53 24 <0.01 large

all (≥ 3) 65 10 <0.01 large

Notice that when incrementing the number of tested paths (from
3 to 10+), the top 3+ path ratio tends to increase (from 4% to 24%),
while the top 1 path ratio tends to decrease (from 73% to 53%).
This happens because the more tested paths a method has, the
more it needs to share the calls with the other paths. Nevertheless,
the prevalence of the top 1 is proportionally higher. Consider the
methods with 10+ tested paths: the top 1 receives 53% of the calls,
while all the other tested paths combined receive only 24%.

Finding 4: The top 3+ tested paths receive a minority of
the calls, ranging from 4% to 24%. Overall, the most tested
path of a method has 6.5x more calls than the top 3+.

5 DISCUSSION AND IMPLICATIONS
Novel evidence from real-world systems that some paths in a
method are executed more frequently than others. To the best
of our knowledge, this study is the first to present evidence from
real-world systems that one tested path is prevalent and receives
most of the calls, while other paths are less frequently called. The
most called path of a method has 4x more calls than the second most
called (RQ1) and 6.5xmore calls than the top 3+ (RQ2). This disparity
happens for all analyzed projects, indicating that the developers

across multiple large projects have made this testing choice. Further
analysis is needed to better reason about this disparity. Thus, our
study complements current findings [2–4, 6, 7, 10, 18, 21, 24, 25]
by analyzing real-world projects and confirming that one method
behavior tends to receive most of the calls from test suites.
Novel tools to support the comprehension of test suites. The
discrepancy between the execution frequency of different paths
may provide the basis for the development of novel testing tools.
New tools can explore the execution frequency of the tested paths
to support comprehension of test suites, e.g., presenting the paths
of the SUT that are more/less executed with heatmap-like visual-
izations. These tools can be used by testers to potentially improve
test suites, for example, tested paths that are rarely executed are
candidates to be analyzed and possibly further tested.
Exploring the characteristics of frequently executed paths
to improve automated test generation. Modern test generation
tools [8, 9, 19] that are guided by coverage commonly try to cover
each line/branch/path only once. Therefore, learning the charac-
teristics of frequently executed paths and changing automated test
generators such that they generate multiple test cases for such
paths can be a potential research direction to improve current test
generation tools.

6 THREATS TO VALIDITY
Deselected tests.While monitoring the test suites, we deselected 149
test methods that failed due to the instrumentation. However, those
cases were rare, representing less than 1% of the analyzed tests.
Generalization of the results.We assessed real-world Python systems,
which are among themost popular in the Python ecosystem. Despite
these observations, our findings – as usual in empirical software
engineering – may not be directly generalized to other projects or
other programming languages.

7 RELATEDWORK
The literature shows that developers are more likely to test some
behaviors of the program than others [2–4, 6, 7, 10, 18, 21, 24, 25].
For example, students were found to naively test the “happy cases”,
writing basic test cases covering the expected behavior [7], while
experienced developers are more prone to test unexpected/unhappy
cases [2, 18, 21, 25]. The “happy path testing” is also considered a test
smell that should be avoided [3, 5, 10, 11]. Our study complements
the literature by analyzing real-world projects and confirming that
one method path tends to receive most of the calls from test suites.

8 CONCLUSION
In this paper, we presented an empirical study to assess the tested
paths quantitatively. We monitored the execution of 14,177 tests
from 25 real-world Python systems and assessed 11,425 tested paths
from 2,357 methods. Overall, we found that one tested path is preva-
lent and receives most of the calls, while others are significantly less
executed. As future work, we plan to extend our empirical study to
understand better other characteristics of the tested paths, like the
diversity of inputs, outputs, and exceptions.
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