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ABSTRACT
Understanding the runtime behavioral aspects of a software sys-
tem is fundamental for several software engineering tasks, such as
testing and code comprehension. For this purpose, typically, one
needs to instrument the system and collect data from its execution.
Despite the importance of runtime analysis, few tools have been
created and made public to support developers extracting informa-
tion from software execution. In this paper, we propose SpotFlow,
a tool to ease the runtime analysis of Python programs. With Spot-
Flow, practitioners and researchers can easily extract information
about executed methods, run lines, argument values, return values,
variable states, and thrown exceptions. Finally, we present tool
prototypes built on top of SpotFlow to support software testing
and code comprehension and we detail how SpotFlow runtime data
can support novel empirical studies and datasets. SpotFlow is pub-
licly available at https://github.com/andrehora/spotf low. Video:
https://youtu.be/jhOv3nKz_u4.
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1 INTRODUCTION
Runtime (or dynamic) analysis is the ability to track what is hap-
pening during program execution [15]. Understanding the runtime
behavioral aspects of a software system is fundamental for several
software engineering tasks, such as testing, code comprehension,
and debugging [3]. To this end, typically, one needs to instrument
the system and collect data from its execution. Distinct data can
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be collected at runtime to be further analyzed, including executed
lines, method calls, and execution time, to name a few [2].

Despite the importance of runtime analysis, few tools have been
created and made public to support developers extracting informa-
tion from software execution. For example, in a recent literature
review about runtime monitoring, Rabiser et al. [12] found that
most of the analyzed tools are not available (anymore) to the public.

In this paper, we propose SpotFlow, a tool to ease runtime analy-
sis in Python (Section 2). SpotFlow executes and monitors a target
Python program, collecting detailed information on method calls
and states. For a more precise analysis, SpotFlow gathers data at the
method-level for every method call, such as executed lines, argu-
ment values, return values, variable states, and thrown exceptions.
SpotFlow can be used by practitioners and researchers working
on the dynamic analysis of Python programs. SpotFlow is publicly
available at https://github.com/andrehora/spotflow.

Finally, we discuss three practical applications of SpotFlow. First,
we present PathSpotter,1 a tool built on top of SpotFlow for com-
puting and exploring tested paths2 of Python methods (Section 3.1).
We relied on PathSpotter to enhance the test suites of real-world
systems, contributing with pull requests that were accepted and
merged into popular projects, such as CPython, Rich, Jupyter Client,
and Pylint. Second, on the top of SpotFlow, we built a prototype
tool to visualize our runtime data (Section 3.2). Third, we detail
how SpotFlow runtime data can support novel empirical studies
and datasets (Section 3.3).
Novelty. The method call and state data collected by SpotFlow
provides the basis for developing novel tools and applications, like
PathSpotter. For instance, SpotFlow can directly detect what classes,
methods, test methods, or calls ran which lines. This overcomes a
limitation found in tracing tools [11], which typically work at the
file-level and can only detect what files ran which lines.
Contributions. The contributions of this paper are twofold. First,
we provide SpotFlow, a publicly available tool to ease runtime
analysis in Python. Second, we discuss applications to support
software testing, code comprehension, and novel empirical studies.

2 SPOTFLOW
2.1 Overview
SpotFlow runs and monitors a target Python program. The target
program is defined by the user and can be one or more Python mod-
ules, classes, methods, or functions. SpotFlow collects method (and
function) call and state data when monitoring a program. This is
done to facilitate fine-grained runtime analysis, so we can precisely
track the origin of runtime events. As we work at the method-level,

1https://github.com/andrehora/pathspotter
2https://andrehora.github.io/pathspotter/examples/report_html/gzip/index.html
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SpotFlow records runtime data, such as argument values, return
values, variable values, thrown exceptions, and executed lines.

2.2 Domain Model
Figure 1 presents the domainmodel of SpotFlow. MonitoredProgram
is a repository of monitored methods, which can be used to ac-
cess all collected data. MonitoredMethod represents a monitored
method. It has method calls and contains static information about
the method/function, like name, full name, class name, file name,
LOC, source code, etc. MethodCall represents a method call that
happens at runtime and includes data about the caller, call stack, and
executed lines. CallState holds the state of a method call, with in-
formation about argument states (ArgState), return states (Return-
State), thrown exceptions (ExceptionState), and local variable
states (VarStateHistory). States know their runtime value, run-
time type, and line number. Finally, VarStateHistory holds every
state of a local variable in a method call. Notice that it is composed
of variable states (VarState), representing the fact that a variable
may change its value and can have multiple states over time.

state

ArgState ReturnState ExceptionState

call

MonitoredProgram
1..*

MonitoredMethod

0..*
VarStateHistory

0..10..10..**

VarState

State

MethodCall

CallState

1..*

Figure 1: SpotFlow domain model.

2.3 Usage
SpotFlow can be run from the command line or programmatically
via API. The running result of SpotFlow is a MonitoredProgram
object, the entry point for the monitored data. First, we can install
SpotFlow via pip:3

# Installing SpotFlow

$ pip install spotflow

We can use SpotFlow to collect data from the execution of any
Python program. For example, to run my_program.py, we could
originally use the following command-line:
# Running a Python program

$ python -m my_program

The same program can be run (and monitored) under SpotFlow
with following command-line:
3https://pypi.org/project/spotflow

# Running a Python program + SpotFlow

$ python -m spotflow -t <target > my_program

The optional argument -t represents the target entity to be
monitored. We can pass the full name of the target method (in
the format module.Class.method) or a prefix to monitor multiple
methods and classes. The final mandatory argument is the original
command line, which is in this case my_program.

We can use SpotFlow to monitor the execution of test suites in
both unittest and pytest frameworks. For example, to run a test
testX.py under SpotFlow, the following change would be needed
in the unittest command line:
# Running unittest

$ python -m unittest testX

# Running unittest + SpotFlow

$ python -m spotflow -t <target > unittest testX

2.4 Example
Suppose we have the target method count_uppercase_words (see
Listing 1) and two test methods, as presented in Listing 2.

1 class StringParser:

2

3 def count_uppercase_words(self , text):

4 counter = 0

5 for word in text.split():

6 if word.isupper ():

7 counter += 1

8 return counter

Listing 1: Target method (parser.py).

1 class TestStringParser(unittest.TestCase):

2

3 def test_find_multiple_uppercase_words(self):

4 p = StringParser ()

5 counter = p.count_uppercase_words("ABC DEF")

6 self.assertEqual(counter , 2)

7

8 def test_not_find_uppercase_word(self):

9 p = StringParser ()

10 counter = p.count_uppercase_words("abc")

11 self.assertEqual(counter , 0)

Listing 2: Test suite (test_parser.py).

After running this test under SpotFlow, it produces the results
summarized in Figure 2. The MonitoredProgram object holds the
monitored methods, which is in this case only method count_-
uppercase_words. Notice that themonitoredmethod count_upper-
case_words has two calls, one from each test method.

The first call runs all lines of the monitored method, as we can
check in run_lines. The state of the first call includes information
about its argument, return, and variable states. The argument of
the first call is the string “ABC DEF” and the return value is the int
2 that happens in line 8 of the monitored method. Note that the
monitored method has two local variables: counter and word. The
states of those variables over time are also recorded, for example,
we can check that counter has the values 0, 1, and 2, while word
has the values “ABC” and “DEF” due to the text split.

Lastly, in the second call, we see that line 7 of the monitored
method was not executed. In this call, the argument is “abc” and
the return value is 0. The local variable counter is always 0 (as it
is not incremented), while word is “abc” (as the text is not split).

https://pypi.org/project/spotflow
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MonitoredProgram:
- monitored_methods: ['parser.StringParser.count_uppercase_words']

MonitoredMethod:
- name: 'count_uppercase_words'
- full_name: 'parser.StringParser.count_uppercase_words'
- class_name: 'StringParser'
- filename: 'parser.py'
- calls: [MethodCall 1, MethodCall 2]

MethodCall 1:
- caller: 'test_find_multiple_uppercase_words'
- run_lines: [3, 4, 5, 6, 7, 8]
- call_state: CallState 1

CallState 1:
- arg_states: [ArgState(name='text', value='ABC DEF']
- return_state: ReturnState(value=2, lineno=8)
- var_states:

- counter: VarStateHistory([0, 1, 2])
- word: VarStateHistory(['ABC', 'DEF'])

MethodCall 2:
- caller: 'test_not_find_uppercase_word'
- run_lines: [3, 4, 5, 6, 8]
- call_state: CallState 2

CallState 2:
- arg_states: [ArgState(name='text', value='abc']
- return_state: ReturnState(value=0, lineno=8)
- var_states:

- counter: VarStateHistory([0])
- word: VarStateHistory(['abc'])

Figure 2: Example of SpotFlow result objects.

2.5 Implementation Notes
SpotFlow is implemented with the support of the standard system’s
trace function sys.settrace [11]. This function is the basis for
performing runtime analysis in Python, for instance, it is used to
build Coverage.py, the de facto coverage tool for Python. The trace
function allows for registering a hook that gets called at every
executed line of code, function call, function return, and exception.

SpotFlow registers to the hook, monitors those events, and col-
lects the domain model objects presented in Figure 1, such as
MethodCall and CallState. Unfortunately, the trace function does
not provide a simple way to collect those objects. That is, when a
certain line of code is being executed, the trace function does not
inform in which code entity the line is located, for example, in a
method, class method, function, or local function. To overcome this
limitation and find the proper data, SpotFlow performs the inspec-
tion of live objects on the current stack frame. For this purpose, we
rely on the inspect4 module, which provides functions to help get
information about live objects, such as modules, classes, methods,
functions, and frame objects.

2.6 Evaluation: Runtime Overhead
To evaluate the overhead added by SpotFlow, we execute the test
suites of five popular Python libraries: json, ast, gzip, csv, and os. In
total, those libraries have 797 tests. For each library, we report the
average execution time (in seconds) over five runs. Table 1 presents
the original execution time of each test suite and the execution time
of SpotFlow in two settings: (1) the default, when VarStateHistory
is not collected, and (2) the full, when all data is collected. In the
4https://docs.python.org/3/library/inspect.html

default setting, the added overhead varies from +2.0x to +22.4x,
while in the full setting, it varies from +4.1x to +64.1x. The overhead
imposed by SpotFlow is not negligible, mainly in the full setting,
however, it is in line with similar runtime tools [4, 7].

Table 1: Execution time of SpotFlow.

Project #Tests Execution time (seconds)
Test Suite SpotFlow Default SpotFlow Full

json 168 0.65 1.27 (+2.0x) 2.65 (+4.1x)
ast 139 0.61 2.24 (+3.7x) 3.49 (+5.7x)
gzip 61 0.25 1.75 (+7.0x) 2.69 (+10.7x)
csv 113 0.04 0.70 (+14.3x) 2.83 (+57.4x)
os 316 0.92 20.82 (+22.4x) 59.49 (+64.1x)

3 PRACTICAL APPLICATIONS
3.1 Software Testing
Due to the granularity level of analysis, SpotFlow can support the
development of novel software testing tools. In this context, we
developed PathSpotter, a tool for computing and exploring tested
paths of Python methods. A tested path of a method represents a set
of input values that will make the method behave in the same way,
that is, execute the same lines of code. PathSpotter generates HTML
reports for the whole project5 and individual methods.6 PathSpotter
can be used to perform equivalence partitioning and boundary value
analysis to support testing [1]. We relied on PathSpotter to improve
the test suites of real-world projects. We successfully contributed
with test improvement pull requests that were accepted and merged
in highly relevant projects, such as CPython (PR 101378), Rich (PR
2786), Jupyter Client (PR 929), and Pylint (PR 8159).

As an example, Figure 3 presents the tested paths of the gzip
method flush.7 This method has a total of 25 calls and three tested
paths. Figure 3(a) presents Path 1 (when the conditional in line 3
is true), which has 17/25 calls (68.0%). Figure 3(b) shows Path 2
(when the conditional in line 3 is false), which includes 7/25 calls
(28.0%). Lastly, Figure 3(c) presents Path 3 with 1/25 (4.0%), when
the ValueError exception is thrown in line 2.

3.2 Code Comprehension
Understanding the behavioral aspects is fundamental to improving
code comprehension. For this purpose, visual solutions to learn
programming have been proposed to aid developers in actually
seeing the program state [8]. In this context, on the top of SpotFlow,
we built a prototype tool to visualize our runtime data. This tool
could be part of some visual solution to better understand the
internal behaviors of a method. As an example (see Figure 4), we
configured the tool to present: the executed lines of code ( ), the
argument values ( ), the return values ( ), and the variable values
over time ( ). In this kind of solution, we can uncover every variable
value, visually supporting code comprehension.

5Example: https://andrehora.github.io/pathspotter/examples/report_html/calendar
6Example: https://andrehora.github.io/pathspotter/examples/report_html/calendar/
calendar.monthrange.html
7https://andrehora.github.io/pathspotter/examples/report_html/gzip/gzip.GzipFile.
flush.html
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(a) Path 1: 17/25 calls (conditional in line 3 is true).

(b) Path 2: 7/25 calls (conditional in line 3 is false).

(c) Path 3: 1/25 call (exception is thrown in line 2).

Figure 3: Tested paths of gzip.GzipFile.flush.

Figure 4: Calls and states of count_uppercase_words.

3.3 Empirical Studies and Datasets
1: Empirical Studies on Runtime Analysis. As a motivational
example, we analyze with SpotFlow the test suite of the gzip Python
library. We find that 31 gzip methods are executed 14,366 times. The
most called method is: _PaddedFile.read8 (5,432 calls). Among
all calls, 10,865 return some value, while the others return void or
throw an exception. From the 10,865 calls that return some value,
1,371 return boolean values. Digging a bit more, we detect that those
returned boolean values are true in 1,300 calls (95%) and false in 71
ones (5%). We also find that 63 exceptions are thrown at runtime:
EOFError (40), ValueError (11), FileExistsError (5), TypeError
(3), BadGzipFile (3), and UnsupportedOperation (1). This kind
of analysis exemplifies how we can explore the runtime data, for
example, to understand common (and rare) testing scenarios [1].
2: Datasets with Runtime Metrics. SpotFlow can support the
creation of novel datasets with a diversity of dynamic metrics. As an
example, we present two datasets created with SpotFlow. To create
them, we analyzed the test suites of 15 popular Python libraries.
•Dataset 1: Variables Values at Runtime.We extracted every variable
name and their respective values at runtime. The dataset contains
1,234 distinct variables and a total of 133,169 distinct values. This
kind of dataset can be used to gauge the quality of the tested data
and to support the improvement of fake data generators [5].
•Dataset 2: Mapping Between Test Cases and Application Methods.We
extracted every test method that executes at least one application
8https://github.com/python/cpython/blob/c051d55/Lib/gzip.py#L88

method and mapped each test to their respective executed methods.
The dataset contains 2,458 test methods and 42,218 executed appli-
cation methods. In total, the application methods were executed
2,722,746 times by the tests. This kind of dataset has multiple appli-
cations for researchers, for example, to build coverage matrix [9],
to support automated test generation [14], and to support code
execution prediction with Large Language Models (LLMs) [10, 13].

Dataset: https://doi.org/10.5281/zenodo.10015299.

4 RELATEDWORK
Dynamic analysis is fundamental for several software engineering
tasks, such as software testing, program comprehension, and debug-
ging [3, 6, 8]. Unfortunately, few tools have been created and made
public to support developers extracting information from software
execution. Rabiser et al. [12] found that most monitoring tools are
not publicly available. In Python, an exception is DynaPyt [4], a
dynamic analysis framework that offers hooks into specific kinds
of runtime events, such as function calls, writes of object attributes,
and control flow decisions. DynaPyt does not have hooks that get
called at every line of code as it focuses on AST constructors. Thus,
unfortunately, we could not rely on DynaPyt to build tools that rely
on the executed lines of code, like PathSpotter. In Python, there
is also the native trace function sys.settrace [11]. However, its
results only present executed lines at the file-level. In contrast, Spot-
Flow works at the method-level to track calls and create high-level
objects, such as MethodCall and CallState.

5 CONCLUSION
In this paper, we proposed SpotFlow, a tool to ease the runtime
analysis of Python programs. We discussed practical applications
and presented tools, empirical studies, and datasets built with Spot-
Flow. As future work, we plan to build novel datasets to support
empirical studies and tools to support software development.
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