
Availability and Usage of Platform-Specific APIs: A First
Empirical Study

Ricardo Job
IFPB

Cajazeiras, Brazil
ricardo.job@ifpb.edu.br

Andre Hora
Department of Computer Science, UFMG

Belo Horizonte, Brazil
andrehora@dcc.ufmg.br

ABSTRACT
A platform-specific API is an API implemented for a particular
platform (e.g., operating system), therefore, it may not work on
other platforms than the target one. In this paper, we propose a
first empirical study to assess the availability and usage of platform-
specific APIs. We analyze the platform-specific APIs provided by
the Python Standard Library and mine their usage in 100 popular
systems. We find that 21% of the Python Standard Library APIs
are platform-specific and that 15% of the modules contain at least
one. The platforms with the most availability restrictions are WASI
(43.69%), Emscripten (43.64%), Unix (6.76%), and Windows (2.12%).
Moreover, we find that platform-specific APIs are largely used in
Python. We detect over 19K API usages in all 100 projects, in both
production (52.6%) and test code (47.4%). We conclude by discussing
practical implications for practitioners and researchers.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
software testing, mining software repositories, test smells, Python

ACM Reference Format:
Ricardo Job and Andre Hora. 2024. Availability and Usage of Platform-
Specific APIs: A First Empirical Study. In 21st International Conference on
Mining Software Repositories (MSR ’24), April 15–16, 2024, Lisbon, Portugal.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3643991.3644925

1 INTRODUCTION
Application Programming Interfaces (APIs) offer multiple benefits
to users, such as feature reuse, productivity improvement, and re-
duction of development costs [9, 16, 17, 19]. A platform-specific
API is an API implemented for a particular platform (e.g., operat-
ing system), therefore, it may not work on other platforms than
the target one. For example, some APIs provided by the Python
Standard Library have availability restrictions, such as the API

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR ’24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0587-8/24/04. . . $15.00
https://doi.org/10.1145/3643991.3644925

os.listvolumes,1 which is available only for Windows, and the
API os.chown,2 which is is available only for Unix.

Nowadays, software systems are often tested on multiple plat-
forms to increase quality and avoid bugs. This is supported by
containers and modern CI/CD tools, such as GitHub Actions, which
make it simple to test, for example, in the Linux, Windows, and ma-
cOS operating systems [7]. In this context, platform-specific APIs
are problematic because they may break test suites on a certain
platform if not properly used. Thus, a system that targets multiple
platforms but uses platform-specific APIs should implement defen-
sive code to ensure it will properly work on the desired platforms.
For instance, Figure 1 presents usage examples of platform-specific
APIs in three real-world projects: Tornado, Django, and Ray.

(a) Snippet of _reload in Tornado.

(b) Snippet of _ensure_location_group_id in Django.

(c) Snippet of _get_max_path_length in Ray.

Figure 1: Usage examples of platform-specific APIs.

Figure 1a shows a call to the platform-specific API signal.-
setitimer3 inside an if block to ensure that the current operating
system is notWindows. Similarly, Figure 1b presents a case in which
the platform-specific API os.chown4 is called within a try-except
1https://docs.python.org/3/library/os.html#os.listvolumes
2https://docs.python.org/3/library/os.html#os.chown
3https://github.com/tornadoweb/tornado/blob/f5df43f26bb4d00759176f7cbec8bdce6
9f2f4f/tornado/autoreload.py#L201
4https://github.com/django/django/blob/311718feb5f1fb9ff794bbac0cda48cfc3410d
e8/django/core/files/storage/filesystem.py#L139

https://doi.org/10.1145/3643991.3644925
https://doi.org/10.1145/3643991.3644925
https://docs.python.org/3/library/os.html#os.listvolumes
https://docs.python.org/3/library/os.html#os.chown
https://github.com/tornadoweb/tornado/blob/f5df43f26bb4d00759176f7cbec8bdce69f2f4f/tornado/autoreload.py#L201
https://github.com/tornadoweb/tornado/blob/f5df43f26bb4d00759176f7cbec8bdce69f2f4f/tornado/autoreload.py#L201
https://github.com/django/django/blob/311718feb5f1fb9ff794bbac0cda48cfc3410de8/django/core/files/storage/filesystem.py#L139
https://github.com/django/django/blob/311718feb5f1fb9ff794bbac0cda48cfc3410de8/django/core/files/storage/filesystem.py#L139

MSR ’24, April 15–16, 2024, Lisbon, Portugal Job, R and Hora, A.

block, while Figure 1c shows a call to the platform-specific API
os.pathconf5 inside an if block to ensure the API really exists in
the current operating system.

Despite the importance of platform-specific APIs to build real-
world software projects, we are not aware of their real availability
nor their possible impact on client systems. This knowledge can
be used to better understand whether developers are aware of the
API restrictions and support the creation of novel guidelines for
using platform-specific APIs, like commonly adopted defensive
practices. While APIs, in general, is a research topic broadly studied
by prior literature (e.g., [2, 5, 8, 10–15, 18, 20–25]), to the best of
our knowledge, the platform-specific APIs have never been deeply
explored by the research community.

In this paper, we propose a first empirical study to assess the
platform-specific APIs. Specifically, we explore (RQ1) the avail-
ability of platform-specific APIs provided by the Python Standard
Library and (RQ2) their usage in 100 real-world systems. We find
that 21% of the Python Standard Library APIs are platform-specific
and that 15% of the modules contain at least one. The platforms with
the most availability restrictions are WASI (43.69%), Emscripten
(43.64%), Unix (6.76%), and Windows (2.12%). Moreover, platform-
specific APIs are largely used in Python. We detect 19,288 usages
of 683 platform-specific APIs in all 100 projects, in both production
(52.6%) and test code (47.4%). Finally, we discuss implications for
practitioners and researchers. Our results are publicly available [1].
Contributions. The contributions of the paper are threefold. First,
we present the first empirical study to analyze the availability of
platform-specific APIs. Second, we propose to assess the usage of
platform-specific APIs in real-world systems. Third, we provide a
set of implications for researchers and practitioners.

2 STUDY DESIGN
2.1 Case Study
We aim to assess real-world and relevant APIs and software sys-
tems.We selected Python due to its popularity and the rich software
ecosystem with widely adopted projects to support web develop-
ment, machine learning, and data analysis

We analyze the availability of platform-specific APIs provided
by Python Standard Library. This library is fundamental to building
any Python application, providing features to handle text process-
ing, file access, persistence, and networking, to name a few.

We also analyze the usage of the platform-specific APIs. For this
purpose, we selected the top 100 most popular Python software
systems hosted on GitHub sorted in descending order of the number
of stars [3, 4]. We relied on the GitHub Search tool (GHS) [6]6 to
find the 100 software projects. In this process, we took special care
to filter out non-software projects, such as tutorials, examples, and
code samples. On the median, the projects have 17,203 stars, 3,710
commits, and 84 test files.

2.2 Detecting Platform-Specific APIs
A platform-specific API is an API implemented for a particular
platform, therefore, it may not work on other platforms than the
5https://github.com/ray-project/ray/blob/fc98a5f286877ce7f6241961aca0c9127bee2
1ad/python/ray/tune/experiment/trial.py#L169
6https://seart-ghs.si.usi.ch

target one. For example, the API os.listdrives7 returns a list
with the names of drives on Windows systems only.

Next, we describe the steps to (A) collect APIs in the Python
Standard Library, (B) detect platform-specific APIs, and (C) assess
the usage of platform-specific APIs.
A. Collecting APIs in the Python Standard Library. First, we
inspected the The Python Standard Library reference manual8 of the
official language documentation, which summarizes all modules
provided by the Python Standard Library in version 3.11. Next,
we manually identified all modules that can be imported by client
systems. In this process, we took special care to filter out built-in
(written in C) modules, types, functions, and constants, which are
not in the scope of this study. We detected 341 modules, and for
each module, we mined their provided APIs. In this process, we
identified 8,795 APIs, as summarized in Table 1. Most APIs are at
the level of method (33.43%), function (24.84), and data (16.35%).

Table 1: APIs provided by the Python Standard Library.

API Level Description # %

Method Object method 2,940 33.43
Function Module-level function 2,185 24.84
Data Global data (variable or value) 1,438 16.35
Attribute Object data attribute 1,073 12.20
Class Class 942 10.71
Exception Exception class 217 2.47

All 8,795 100.00

B.Detecting Platform-SpecificAPIs.APIs provided by the Python
Standard Library may have availability9 notes indicating their sup-
ported and unsupported platforms. This is the standard way to
indicate the API availability, for example, Availability: Windows
means that an API is specific to Windows. According to the Python
documentation,Availability: Unix indicates that the API is generally
supported by macOS. We collected this information and classified
the APIs with availability notes as platform-specific. Among the
8,795 APIs provided by the Python Standard Library, we detected
1,841 platform-specific APIs.
C. Assessing the usage of platform-specific APIs.We designed
and implemented an AST-based tool to parse source code and detect
the usage of platform-specific APIs. Specifically, the tool detects the
presence of the selected platform-specific APIs and their location
in the source code, in test or production code (a Python source file
with the substring “test” on its path is classified as test, otherwise
it is classified as production). We run the proposed tool to detect
platform-specific APIs in the 100 selected systems. In total, we
detect over 19K usages of platform-specific APIs in all 100 projects.

2.3 Research Questions
2.3.1 RQ1: What is the availability of platform-specific APIs? First,
we assess the availability of the platform-specific APIs provided by
the Python Standard Library.We analyze the occurrence of platform-
specific APIs by API level, module, and platform. Rationale:We
7https://docs.python.org/3/library/os.html#os.listdrives
8https://docs.python.org/3.11/library/index.html
9https://docs.python.org/3.11/library/intro.html#notes-on-availability

https://github.com/ray-project/ray/blob/fc98a5f286877ce7f6241961aca0c9127bee21ad/python/ray/tune/experiment/trial.py#L169
https://github.com/ray-project/ray/blob/fc98a5f286877ce7f6241961aca0c9127bee21ad/python/ray/tune/experiment/trial.py#L169
https://seart-ghs.si.usi.ch
https://docs.python.org/3/library/os.html#os.listdrives
https://docs.python.org/3.11/library/index.html
https://docs.python.org/3.11/library/intro.html#notes-on-availability

Availability and Usage of Platform-Specific APIs: A First Empirical Study MSR ’24, April 15–16, 2024, Lisbon, Portugal

aim to better understand to what extent platform-specific APIs
happen in Python Standard Library and identify the key entities.
So far, it is not clear the extension of those APIs.

2.3.2 RQ2: What is the usage of platform-specific APIs? Next, we
explore the usage of platform-specific APIs by client systems. Here,
we present the usage in three distinct views: by system, API, and
module. We also present the data according to their location in the
source code (test or production code). Rationale: We aim to better
understand to what extent platform-specific APIs are consumed by
real-world Python systems. If this is common, it may bring to light
novel discussions, for example, whether developers are aware of
the API restrictions and how to mitigate possible problems caused
by the usage of platform-specific APIs.

3 RESULTS
3.1 RQ1: Availability of Platform-Specific APIs
Table 2 summarizes the detected platform-specific APIs. Overall, we
find 1,841 (20.93%) platform-specific APIs in the 8,795 APIs provided
by the Python Standard Library. The most common API levels are
methods (715 APIs), function (363 APIs), and data (308 APIs). The
highest proportion happens in exceptions: 80 out of 217 (36.87%).

Table 2: Platform-specific APIs by API level.

Pos API Level #APIs Platform-Specific APIs
%

1 Method 2,940 715 24.32
2 Function 2,185 363 16.61
3 Data 1,438 308 21.42
4 Attribute 1,073 195 18.17
5 Class 942 180 19.11
6 Exception 217 80 36.87
All 8,795 1,841 20.93

Overall, we find platform-specific APIs in 51 out of 341 (15%)
Pythonmodules. Table 3 presents themoduleswith themost platform-
specific APIs. The Python modules with the most platform-specific
APIs are asyncio (300), os (220), and ssl (157).

Table 3: Platform-specific APIs by module.

Pos Module # %

1 asyncio 300 16.30
2 os 220 11.95
3 ssl 157 8.53
4 socket 121 6.57
5 urllib.request 94 5.11
All 1,841 100.00

Finding 1: 21% of the APIs provided by the Python Standard
Library are platform-specific. 15% of the modules contain at
least one platform-specific API. The modules with the most
platform-specific APIs are asyncio, os, and ssl.

Table 4 details the availability of the platform-specific APIs. No-
tice the APIs are most unavailable on the platforms WASI (43.69%)
and Emscripten (43.64%). We also find a significant number of APIs
that are only available on certain operation systems: Unix (6.76%),
Windows (2.12%), and Linux (1.94%). Overall, we find 17 different
platforms with availability restrictions, as summarized in Table 5.

Table 4: Platform-specific APIs by platform.

Pos Platform # %

1 not WASI 1,667 43.69
2 not Emscripten 1,665 43.64
3 Unix 258 6.76
4 Windows 81 2.12
5 Linux 74 1.94
- Others 73 1.91
All 3,818 100.00

Table 5: Platforms with availability restrictions.

Linux,Windows, macOS, Unix, AIX, Android
Emscripten,WASI, pthreads, POSIX, Solaris, VxWorks
FreeBSD, BSD, DragonFlyBSD, NetBSD, OpenBSD

Finding 2: We find 17 different platforms with availability
restrictions. Themost frequent areWASI (43.69%), Emscripten
(43.64%), Unix (6.76%), and Windows (2.12%).

3.2 RQ2: Usage of Platform-Specific APIs
Next, we analyze the usage of the platform-specific APIs in the 100
selected projects. Overall, we find 19,288 usages of 683 platform-
specific APIs in all 100 projects. On the median, each project uses
79.5 platform-specific APIs (the first quartile is 23.3 and the third
quartile is 184.3). Table 6 details the top-5 projects with the most
platform-specific APIs. The Ray project has the highest usage
(2,267), followed by Salt (2,098) and AIOHTTP (1,173).

Table 6 also details where the platform-specific APIs are located
in source code, that is, in production or test code. Interestingly,
among the 19,288 usages of platform-specific APIs, we find that
10,152 (52.6%) are located in the production code, while 9,136 (47.4%)
happen in the test code.

Finding 3: Platform-specific APIs are largely used in Python.
We find 19,288 usages of 683 platform-specific APIs in all 100
projects, in both production (52.6%) and test code (47.4%).

MSR ’24, April 15–16, 2024, Lisbon, Portugal Job, R and Hora, A.

Table 6: Usage of platform-specific APIs.

Pos Project # % Test Production

1 ray-project/ray 2,267 11.75 1,336 931
2 saltstack/salt 2,098 10.88 857 1,241
3 aio-libs/aiohttp 1,173 6.08 867 306
4 jina-ai/jina 1,162 6.02 889 273
5 ansible/ansible 888 4.60 308 580
All 19,288 100.00 9,136 10,152

Overall, the top-5 most used modules are subprocess (25.76%),
asyncio (21.38%), threading (13.18%), os (10.40%), socket (10.26%).
Table 7 summarizes the most used platform-specific APIs. The
most used API is asyncio.sleep10 (838 occurrences), which sus-
pends the current task. Next, we have two APIs provided by the
module subprocess. The API subprocess.Popen11 executes a
child program in a new process and has 798 occurrences. The API
subprocess.PIPE12 has 703 occurrences and it is a special value
that indicates that a pipe should be opened. In Table 7, we also detail
the frequency of the platform-specific APIs in test and production
code. The usage of the platform-specific APIs is distinct among
test and production code. For example, the API asyncio.sleep
is mostly used in test code (83%), while the API os.getenv13 is
mostly used in production code (74%). The top-3 modules in the
test code are: asyncio, subprocess, and threading, while in the
production code are: subprocess, asyncio, and os.

Finding 4: The most used platform-specific APIs are
asyncio.sleep, subprocess.Popen, subprocess.PIPE,
and os.getenv. However, there is a difference in usage in
test and production code: asyncio.sleep is mostly used in
tests, while os.getenv is mostly used in production code.

4 DISCUSSION AND IMPLICATIONS
Platform-specific APIs are widespread in the Python Stan-
dard Library but there is a lack of dedicated documentation.
In RQ1, we found that 21% of the APIs provided by the Python Stan-
dard Library are platform-specific. Modules like asyncio, os, and
ssl contain hundreds of platform-specific APIs. Moreover, we find
17 different platforms with availability restrictions, including main-
stream OSs (Linux, Windows, macOS, and Unix), open-source Unix-
like OSs (BSD, OpenBSD, FreeBSD, DragonFlyBSD, and NetBSD),
proprietary OSs (Oracle Solaris, IBM AIX, and VxWorks), mobile
OS (Android), WebAssembly platforms (Emscripten andWASI), and
standards (POSIX and pthreads). Despite platform-specific APIs
being widespread in the Python Standard Library, there is no doc-
umentation dedicated to their availability. The Python Standard
Library documentation only provides a few notes regarding avail-
ability.14 Therefore, we recommend that dedicated documentation

10https://docs.python.org/3/library/asyncio-task.html#asyncio.sleep
11https://docs.python.org/3/library/subprocess.html#subprocess.Popen
12https://docs.python.org/3/library/subprocess.html#subprocess.PIPE
13https://docs.python.org/3/library/os.html#os.getenv
14https://docs.python.org/3/library/intro.html#notes-on-availability

should be provided to better present the current state of availability
and guide developers in charge of using platform-specific APIs. This
kind of documentation could be auto-generated based on our dataset.
Platform-specific APIs are largely used by Python systems
but there is an absence of best practices and anti-patterns. In
RQ2, we found over 19K usages of 683 platform-specific APIs in
all 100 projects, in both production (52.6%) and test code (47.4%).
We also detected that some APIs are more used in test code, while
others are more adopted in production code. Given that platform-
specific APIs are largely used by Python systems, developers would
benefit from best practices to use them, both in test or production
code. For example, the code presented in Figure 1 shows that de-
velopers may use multiple solutions (i.e., defensive coding) to call
platform-specific APIs, however, it is not clear what are the possible
solutions and most adopted ones. Thus, our results provide the basis
for the development of novel qualitative studies on how to properly use
platform-specific APIs, revealing best practices and the anti-patterns
that should be avoided.

5 LIMITATION
This study focuses on the analysis of the platform-specific APIs
provided by the Python Standard Library and their usage in popular
projects hosted on GitHub. Therefore, our findings – as usual in
empirical software engineering – may not be directly generalized
to other projects or other programming languages. Further studies
should be performed to better understand the platform-specific
APIs in other software ecosystems.

6 RELATEDWORK
APIs provide several benefits to users, such as feature reuse, pro-
ductivity improvement, and reduction of development costs [9, 16,
17, 19]. API is a research topic broadly studied by prior literature,
including API migration [2, 15], API deprecation [12, 18, 20–22, 25],
and API evolution [5, 8, 10, 13, 14, 23, 24], to name a few. Some
studies explore the compatibility issues caused by Android API
evolution. In this case, researchers assess the challenges faced by
Android developers to keep their applications working on multiple
Android platforms [13, 14, 24]. To our knowledge, platform-specific
APIs are not directly covered by the literature. Our study contributes
to this research line by assessing the availability and usage of the
platform-specific APIs provided by the Python Standard Library.

7 CONCLUSION AND FURTHER STEPS
In this paper, we provided an empirical study to assess the avail-
ability and usage of platform-specific APIs in Python. We analyzed
the platform-specific APIs of the Python Standard Library and
mined their usage in 100 popular systems. We found that 21% of
the Python Standard Library APIs are platform-specific and 15% of
the modules contain at least one. We also found 19,288 usages of
platform-specific APIs that were detected across 100 projects, both
in production (52.6%) and test code (47.4%). Lastly, we discussed
practical implications for practitioners and researchers.

As future work, we plan to perform a qualitative analysis to
better understand how platform-specific APIs are used in practice
by developers and explore what are the best programming practices.

https://docs.python.org/3/library/asyncio-task.html#asyncio.sleep
https://docs.python.org/3/library/subprocess.html#subprocess.Popen
https://docs.python.org/3/library/subprocess.html#subprocess.PIPE
https://docs.python.org/3/library/os.html#os.getenv
https://docs.python.org/3/library/intro.html#notes-on-availability

Availability and Usage of Platform-Specific APIs: A First Empirical Study MSR ’24, April 15–16, 2024, Lisbon, Portugal

Table 7: Most used platform-specific APIs.

Pos API API Level All Test Production
% # % # %

1 asyncio.sleep function 838 4.35 698 83 140 17
2 subprocess.Popen class 798 4.14 343 43 455 57
3 subprocess.PIPE data 703 3.64 292 42 411 58
4 os.getenv function 673 3.49 178 26 495 74
5 subprocess.check_output function 615 3.19 318 52 297 48
All 19,288 100.00 9,136 - 10,152 -

We also plan to analyze the availability and usage of platform-
specific APIs in other programming languages and libraries.

ACKNOWLEDGMENT
This research is supported by CAPES, CNPq, and FAPEMIG.

REFERENCES
[1] Anonymous Anonymous. November, 2023. Platform-Specific APIs. https://doi.or

g/10.5281/zenodo.10120107
[2] Lívia Barbosa and Andre Hora. 2022. How and why developers migrate Python

tests. In International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 538–548.

[3] Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding
the Factors that Impact the Popularity of GitHub Repositories. In International
Conference on Software Maintenance and Evolution. 334–344. https://doi.org/10.1
109/ICSME.2016.31

[4] Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub Star? Under-
standing Repository Starring Practices in a Social Coding Platform. Journal of
Systems and Software 146 (2018), 112–129. https://doi.org/10.1016/j.jss.2018.09.016

[5] Aline Brito, Marco Tulio Valente, Laerte Xavier, and Andre Hora. 2020. You
Broke My Code: Understanding the Motivations for Breaking Changes in APIs.
Empirical Software Engineering 25 (2020), 1458–1492.

[6] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects in
GitHub for MSR Studies. In International Conference on Mining Software Reposito-
ries (MSR). IEEE, 560–564. https://doi.org/10.1109/MSR52588.2021.00074

[7] GitHub-hosted runners. November, 2023. https://docs.github.com/en/actions/using-
github-hosted-runners/about-github-hosted-runners/about-github-hosted-
runners.

[8] Andre Hora, Romain Robbes, Marco Tulio Valente, Nicolas Anquetil, Anne Etien,
and Stephane Ducasse. 2018. How do Developers React to API Evolution? A
Large-Scale Empirical Study. Software Quality Journal 26, 1 (2018), 161–191.

[9] Dino Konstantopoulos, John Marien, Mike Pinkerton, and Eric Braude. 2009. Best
principles in the design of shared software. In International Computer Software
and Applications Conference. 287–292.

[10] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2018. Do developers update their library dependencies? An empirical study
on the impact of security advisories on library migration. Empirical Software
Engineering 23 (2018), 384–417.

[11] Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang. 2021. A Systematic
Review of API Evolution Literature. ACM Computing Surveys (CSUR) 54, 8 (2021),
1–36. https://doi.org/10.1145/3470133

[12] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2018.
Characterising deprecated android apis. In International Conference on Mining
Software Repositories. 254–264.

[13] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano
Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2013. Api change and fault
proneness: A threat to the success of android apps. In Joint Meeting on Foundations
of Software Engineering. 477–487.

[14] Tarek Mahmud, Meiru Che, and Guowei Yang. 2022. Android API field evolution
and its induced compatibility issues. In International Symposium on Empirical
Software Engineering and Measurement. 34–44.

[15] Matias Martinez and Bruno Gois Mateus. 2020. How and Why did developers
migrate Android Applications from Java to Kotlin? A study based on code analysis
and interviews with developers. arXiv preprint arXiv:2003.12730 (2020).

[16] Gabriel Menezes, Bruno Cafeo, and Andre Hora. 2021. How Are Framework
Code Samples Maintained and Used by Developers? The Case of Android and
Spring Boot. Journal of Systems and Software 1 (2021), 1–30.

[17] Simon Moser and Oscar Nierstrasz. 1996. The effect of object-oriented frame-
works on developer productivity. Computer 29, 9 (1996).

[18] Romulo Nascimento, Eduardo Figueiredo, and Andre Hora. 2021. JavaScript API
Deprecation Landscape: A Survey and Mining Study. IEEE Software 39, 3 (2021),
96–105.

[19] Steven Raemaekers, Arie van Deursen, and Joost Visser. 2012. Measuring soft-
ware library stability through historical version analysis. In IEEE International
Conference on Software Maintenance (ICSM). 378–387. https://doi.org/10.1109/IC
SM.2012.6405296

[20] Romain Robbes, Mircea Lungu, and David Röthlisberger. 2012. How do developers
react to API deprecation? The case of a Smalltalk ecosystem. In International
Symposium on the Foundations of Software Engineering. 1–11.

[21] Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. 2018. On the
reaction to deprecation of clients of 4 + 1 popular Java APIs and the JDK. Empirical
Software Engineering 23, 4 (Aug. 2018), 2158–2197. https://doi.org/10.1007/s10664-
017-9554-9

[22] Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. 2019. To react,
or not to react: Patterns of reaction to API deprecation. Empirical Software
Engineering 24, 6 (Dec. 2019), 3824–3870. https://doi.org/10.1007/s10664-019-
09713-w

[23] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. 2017. Historical
and impact analysis of API breaking changes: A large-scale study. In International
Conference on Software Analysis, Evolution and Reengineering. IEEE, 138–147.

[24] Hao Xia, Yuan Zhang, Yingtian Zhou, Xiaoting Chen, YangWang, Xiangyu Zhang,
Shuaishuai Cui, Geng Hong, Xiaohan Zhang, Min Yang, et al. 2020. How Android
developers handle evolution-induced API compatibility issues: a large-scale study.
In International Conference on Software Engineering. 886–898.

[25] Jing Zhou and Robert J Walker. 2016. API deprecation: a retrospective analysis
and detection method for code examples on the web. In International Symposium
on Foundations of Software Engineering. 266–277.

https://doi.org/10.5281/zenodo.10120107
https://doi.org/10.5281/zenodo.10120107
https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/10.1109/MSR52588.2021.00074
https://doi.org/10.1145/3470133
https://doi.org/10.1109/ICSM.2012.6405296
https://doi.org/10.1109/ICSM.2012.6405296
https://doi.org/10.1007/s10664-017-9554-9
https://doi.org/10.1007/s10664-017-9554-9
https://doi.org/10.1007/s10664-019-09713-w
https://doi.org/10.1007/s10664-019-09713-w

	Abstract
	1 Introduction
	2 Study Design
	2.1 Case Study
	2.2 Detecting Platform-Specific APIs
	2.3 Research Questions

	3 Results
	3.1 RQ1: Availability of Platform-Specific APIs
	3.2 RQ2: Usage of Platform-Specific APIs

	4 Discussion and Implications
	5 Limitation
	6 Related Work
	7 Conclusion and Further Steps
	References

