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ABSTRACT
Real-world test suites are often complex and may have thousands
of test cases. In this scenario, it is not easy to spot what values
are actually covered by the tests. Having access to every tested
value of a test suite would provide the basis to (1) assess the qual-
ity of tested data and (2) have actionable information to improve
them. In this paper, we propose TestDossier, a dataset of tested
values automatically extracted from the execution of Python tests.
To collect runtime data, we run an instrumented version of the
tests, monitoring the test execution, and extracting argument and
variable values. We monitored the test suites of 15 Python Standard
Libraries to create the dataset. TestDossier contains 1,234 distinct
argument/variable names and 133,169 distinct values, leading to a
total of 12,9M individual values. We envision that our dataset can
help developers detect rarely tested values, untested values, and
variations of tested values. We also foresee that our dataset can
support novel empirical studies in the context of software testing,
for example, it can expose the diversity of the tested data.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Runtime environments.
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1 INTRODUCTION
Ideally, test suites should test both expected and unexpected be-
haviors to catch more bugs, protect against regressions, and en-
sure sustainable software evolution [1, 4, 12, 18, 19, 28]. In prac-
tice, real-world test suites are often complex and may have thou-
sands of test cases. In this scenario, it is not easy to spot what
values are actually covered by the tests. Therefore, we cannot easily
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detect whether expected and unexpected behaviors are properly
tested [2, 3, 5, 8, 14, 22, 23, 25].

Consider a large test suite that tests multiple encoding formats
(e.g., ascii, utf-8, iso8859-1, etc.). In this context, it is important to
have an overview of every tested encoding format. One solution
would be to inspect each test case and keep track of the tested
encoding formats. This solutionworks for small test suites, however,
it is not feasible for large ones. That is, developers cannot manually
keep track of every relevant value that is tested both directly and
indirectly by the test suite. Having access to the tested values of
a test suite would provide the basis to (1) assess the quality of
tested data and (2) have actionable information to improve them,
for example, creating novel tests to cover untested values.

In this paper, we propose TestDossier, a dataset of tested values
automatically extracted from the execution of Python tests. Our
dataset construction has two major steps: collecting runtime data
and computing tested values (Section 2). To collect runtime data,
we run an instrumented version of the tests, monitoring the test
execution, and extracting argument and variable values. Our dataset
is exported in JSON format, in which a key is an argument/variable
name and the key’s value is a list with every argument/variable
value during the test execution. To create the dataset, we monitored
the test suites of 15 Python Standard Libraries. TestDossier contains
1,234 distinct argument/variable names and 133,169 distinct values,
leading to a total of 12,9M individual values (Section 3).

We conclude by discussing multiple applications for our dataset
(Section 4). We envision that TestDossier can help developers and
testers detect rarely tested values, untested values, and variations
of tested values. We also foresee that our dataset can support the
improvement of fake data generators and novel empirical studies
to expose the diversity of the tested data.
Dataset availability. Our dataset is publicly available at: https:
//doi.org/10.5281/zenodo.10292595.

2 DATASET CONSTRUCTION
Figure 1 presents an overview of the dataset construction, which
has two major steps: (1) collecting runtime data and (2) computing
tested values. Next, we detail each step.

2.1 Collecting Runtime Data
To extract the tested values of a test suite, we need to run an instru-
mented version of the test suite. The first step consists of running
and monitoring the tests and collecting method/function call infor-
mation at runtime. For this purpose, we rely on SpotFlow [17], a
tool to ease runtime analysis in Python.1 It executes and monitors a
target Python program, collecting detailed information on calls and
1https://github.com/andrehora/spotflow
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Figure 1: Overview of the dataset construction.

states. SpotFlow is implemented with the support of the standard
system’s trace function sys.settrace [26]. This function is the ba-
sis for performing runtime analysis in Python, for instance, it is used
to build Coverage.py, the de facto coverage tool for Python [15, 16].
The trace function allows for registering a hook that gets called
at every executed line of code, function call, function return, and
exception. SpotFlow registers to the hook, monitors those events,
and collects call data. This tool performs the inspection of live
objects on the current stack frame2 to collect the call and state
objects. For this purpose, it relies on the inspect3 module, which
provides functions to help get information about live objects, such
as modules, classes, methods, functions, and frame objects.

As output, this step exports information related to the execution
of methods/functions by the test suite, named call data. The call data
consists of multiple objects such as MethodCall and CallState,
which store every call and state of a method/function with their re-
spective argument and variable values. We store values of the basic
build-in types: numeric (int, float, and complex), boolean (bool),
and text sequence (str). We also store values of the types: sequence
(list, tuple, and range), set (frozenset and set), and mapping
(dict) that include only basic types. For other complex objects,
we store their types (not their values) to avoid any possible issue
caused by the inspection of live objects. Notice that knowing the
type of complex objects is valuable because Python is dynamically
typed, therefore, types are only known at runtime.

For example, consider the method count_uppercase_words pre-
sented in Listing 1 and the two test methods presented in Listing 2.
After running and monitoring these tests, this step produces the call
data summarized in Figure 2 (due to space limit, Figure 2 presents
a simplified and didactic version of the generated data).

1 class StringParser:

2

3 def count_uppercase_words(self , text):

4 counter = 0

5 for word in text.split():

6 if word.isupper ():

7 counter += 1

8 return counter

Listing 1: Target method (parser.py).

1 class TestStringParser(unittest.TestCase):

2

3 def test_find_multiple_uppercase_words(self):

4 p = StringParser ()

5 counter = p.count_uppercase_words("ABC DEF")

2https://docs.python.org/3/reference/datamodel.html#frame-objects
3https://docs.python.org/3/library/inspect.html

6 self.assertEqual(counter , 2)

7

8 def test_not_find_uppercase_word(self):

9 p = StringParser ()

10 counter = p.count_uppercase_words("abc")

11 self.assertEqual(counter , 0)

Listing 2: Test suite (test_parser.py).

MonitoredProgram:
- monitored_methods: ['count_uppercase_words']

MonitoredMethod:
- name: 'count_uppercase_words'
- class_name: 'StringParser'
- filename: 'parser.py'
- calls: [MethodCall 1, MethodCall 2]

MethodCall 1:
- caller: 'test_find_multiple_uppercase_words'
- call_state: CallState 1

CallState 1:
- arg_states: [ArgState(name='text', value='ABC DEF']
- var_states:

- counter: VarStateHistory([0, 1, 2])
- word: VarStateHistory(['ABC', 'DEF'])

MethodCall 2:
- caller: 'test_not_find_uppercase_word'
- call_state: CallState 2

CallState 2:
- arg_states: [ArgState(name='text', value='abc']
- var_states:

- counter: VarStateHistory([0])
- word: VarStateHistory(['abc'])

Figure 2: Example of call data (simplified version).

The MonitoredProgram object holds the monitored methods,
which is in this case only method count_uppercase_words.

MethodCall represents a method call that happens at runtime.
CallState holds the state of a method call, with information about
argument values and local variable values. The argument of the first
call is the string “ABC DEF”. Note that the monitored method has
two local variables: counter and word. The states of those variables
over time are also recorded, for example, we can check that counter
has the values 0, 1, and 2, while word has the values “ABC” and
“DEF” due to the text split. In the second call, the argument is “abc”.
The local variable counter is always zero (as it is not incremented),
while word is “abc” (as the text is not split).

https://docs.python.org/3/reference/datamodel.html#frame-objects
https://docs.python.org/3/library/inspect.html
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2.2 Computing Tested Values
In the second step, we compute the tested values by processing
the call data. Specifically, we mine values of arguments and local
variables from the call data objects. We automatically inspect ev-
ery CallState object and extract the argument values from the
attribute arg_states and the variable values from the attribute
var_states (as presented in Figure 2). In this process, we group
argument and variable values by name.

As output, this step exports the tested values dataset in JSON
format. In this dataset, a key is an argument/variable name and
the key’s value is a list with every argument/variable value during
the test execution. Each argument/variable value is a tuple with
(1) the value itself and (2) the frequency of the value. For example,
Figure 3 presents the tested values computed from the call data
presented in Figure 2. We notice three keys representing every
argument/variable name: text, counter, and word. The key’s value
represents the argument/variable values, for example, text has two
values: “ABC DEF” with frequency 1 and “abc” with frequency 1;
counter has three values: 0 with frequency 2, 1 with frequency
1, and 2 with frequency 1; and word has three values: “ABC” with
frequency 1, “DEF” with frequency 1, and “abc” with frequency 1.

{
"text": [["ABC DEF", 1], ["abc", 1]],
"counter": [[0, 2], [1, 1], [2, 1]],
"word": [["ABC", 1], ["DEF", 1], ["abc", 1]]

}

Figure 3: Example of tested values.

3 DATASET DESCRIPTION
Our dataset has been curated from the test suites of 15 Python
Standard Libraries: gzip, calendar, locale, json, ast, csv, ftplib, collec-
tions, os, tarfile, pathlib, smtplib, argparse, configparser, and email.
These libraries are fundamental to building any Python application,
providing features to handle text processing, file access, persistence,
and networking, to name a few. Table 1 presents some statistics of
the dataset. It contains 1,234 distinct argument/variable names and
133,169 distinct values, leading to a total of 12,9M individual values.
On the average, the value frequency is 97.

Table 1: Dataset description.

Data Value

Analyzed test suites 15
Argument/variable names 1,234
Argument/variable values: distinct 133,169
Argument/variable values: all 12,938,567

Value frequency: average 97
Value frequency: median 2
Value frequency: min 1
Value frequency: max 455,462

Dataset size 555MB

4 DATASET USAGE AND LIMITATIONS
Our dataset can be used to help developers and testers detect rarely
tested values, untested values, and variations of tested values. We
also foresee that our dataset can support the improvement of fake
data generators and novel empirical studies to expose the diversity
of the tested data

4.1 Usage 1: Rarely Tested Values
Our dataset can be used to detect rarely tested values. For example,
Figure 4 presents an excerpt of TestDossier, detailing the tested
values of encoding. We notice that popular encoding formats are
largely tested by the test suites, such as ascii, utf-8, and iso8859-1. On
the other hand, we can observe that less popular encoding formats
are rarely tested, for example, euc_kr (Korean encoding), tis620
(Thai encoding), and iso8859-15 (a revision of iso8859-1). Developers
and testers may rely on this data to possibly improve existing tests
that cover these rarely tested values. Note that not necessarily
rarely tested values must be covered by more tests. This data can
be seen as an overview of the tested data and it is up to the expert
to decide whether some tests should be improved or not.

"encoding": [["'ascii'",182133],["'utf-8'",114867],
["'iso8859-1'",90657],["None",5790],["''",551],["'q'",416],
["'us-ascii'",413],["'utf7'",118],["'b'",61],["'locale'",26],
["'utf8'",23],["'latin-1'",22],["'UTF-8'",14],["'utf_8'",13],
["'euc'",12],["'iso88591'",10],["'sjis'",9],["'iso88592'",7],
["'eucjp'",6],["'jis'",6],["'iso8859-9'",6],["'ISO8859-1'",6],
["'ISO8859-15'",5],["'big5'",5],["'JIS7'",5],["'utf-16'",4],
["'microsoftcp1251'",4],["'eucJP'",4],["'88591'",3],
["'885915'",3],["'euckr'",3],["'iso8859-15'",3],["'koi8c'",3],
["'koi8-c'",3],["'microsoft-cp1251'",3],["'iso8859-2'",3],
["'ajec'",3],["'iso-2022-jp'",3],["'iso2022jp'",3],["'jis7'",3],
["'ujis'",3],["'latin_1'",3],["'euc_jp'",3],["'shift_jis'",3],
["'SJIS'",3],["'ISO8859-9'",3],["'euctw'",2],["'iso88599e'",2],
["'cp1133'",2],["'ibmcp1133'",2],["'georgianacademy'",2],
["'mscode'",2],["'pck'",2],["'iso88595'",2],["'KOI8-C'",2],
["'CP1251'",2],["'ISO8859-2'",2],["'iso2022_jp'",2],
["'iso8859_9'",2],["'l1'",2],["'iso8859-9e'",1],
["'ibm-cp1133'",1],["'georgian-academy'",1],["'koic'",1],
["'en'",1],["'c'",1],["'437'",1],["'isiri3342'",1],
["'isciidev'",1],["'armscii8'",1],["'nunacom8'",1],
["'georgianps'",1],["'georgianrs'",1],["'mulelao1'",1],
["'cp1251'",1],["'tscii'",1],["'tscii0'",1],["'tactis'",1],
["'tis620'",1],["'tatarcyr'",1],["'tcvn'",1],["'tcvn5712'",1],
["'viscii'",1],["'viscii111'",1],["'big5hk'",1],["'gbk'",1],
["'euc_kr'",1],["'eucKR'",1],["'ISO8859_15'",1],
["'iso8859_15'",1],["'koi8_c'",1],["'microsoft_cp1251'",1],
["'iso8859_2'",1],["bytes",1]]

Figure 4: Tested values of encoding.

4.2 Usage 2: Variations of Tested Values
We envision that TestDossier can also detect variations of tested
values. Table 2 summarizes some variations considering the tested
values of encoding. We find that the encoding format iso8859-
15 is tested with five variations: iso8859-15, iso8859_15, ISO8859-
15, 885915, ISO8859_15. The encoding format utf-8 has four tested
variations: utf-8, utf8, UTF-8, and utf_8. Developers and testers can
rely on this data to spot tiny tested value variations and use this
information to enhance their test cases. For example, while the
iso8859-15 and iso8859-9 have five variations, the iso8859-2 and
iso8859-1 have only four. This may warn that some variations are
missing in the latter cases.
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Table 2: Examples of variations of tested values (encoding).

Tested Variations #

iso8859-15, iso8859_15, ISO8859-15, 885915, ISO8859_15 5
iso8859-9, iso88599e, iso8859-9e, iso8859_9, ISO8859-9 5

iso8859-2, iso88592, iso8859_2, ISO8859-2 4
iso8859-1, iso88591, ISO8859-1, 88591 4
koi8-c, KOI8-C, koi8c, koi8_c 4
utf-8, utf8, UTF-8, utf_8 4

microsoftcp1251, microsoft-cp1251, microsoft_cp1251 3
iso2022jp, iso2022_jp, iso-2022-jp 3
eucJP, euc_jp, eucjp 3
euckr, euc_kr, eucKR 3

ibmcp1133, ibm-cp1133 2
latin-1, latin_1 2
sjis, SJIS 2

4.3 Usage 3: Untested Values
We also foresee that TestDossier can be used to detect untested
values. Consider again the tested values of encoding. Table 3 details
parts of the ISO8859 encoding family that are tested and untested.
We find four tested parts: iso8859-1, iso8859-2, iso8859-9, and iso8859-
15. Considering that the ISO8859 encoding family is divided into 16
parts,4 we find that 12 parts (16 - 4) are untested, such as iso8859-3
and iso8859-16. In this case, developers and testers can use this
information to create novel tests covering the untested values.

Table 3: Examples of untested values (encoding).

Tested Values iso8859-1, iso8859-2, iso8859-9, iso8859-15

Untested Values
iso8859-3, iso8859-4, iso8859-5, iso8859-6, iso8859-
7, iso8859-8, iso8859-10, iso8859-11, iso8859-12,
iso8859-13, iso8859-14, iso8859-16

4.4 Usage 4: Automated Input Generators
We envision that our dataset can be used to support the improve-
ment of automated input generators. These tools typically generate
fake data to support software testing in multiple contexts, like ad-
dresses, currencies, credit cards, and phone numbers, to name a few.
For this purpose, automated input generators commonly mimic the
real data format with random words. For example, consider the
popular tool called Faker [10]. This tool can generate fake addresses
for a certain country by specifying every possible address format,
such as street names and addresses.5 In this context, our dataset
can be used as a source to discover novel data formats. Our dataset
includes actual tested data about hundreds of distinct contexts, such
as general contexts (e.g., time, date, and filenames) and specific ones
(e.g., locale and language formats). For instance, we can see that a
simple encoding may have dozens of possible formats, as presented
in Figure 4. Those formats can be directly adopted to expand the
ones provided by automated input generators.
4https://en.wikipedia.org/wiki/ISO/IEC_8859
5Example: https://github.com/joke2k/faker/blob/7c9ba46ad7ee5960f22eefd79c20266
f6c9e90ca/faker/providers/address/fr_FR/__init__.py

4.5 Usage 5: Empirical Studies on Tested Data
In addition to exploring the frequency and data format of tested
values, we also foresee that our dataset can support novel empirical
studies in the context of software testing. For example, it can expose
the diversity of the tested data. In this context, metrics can be
proposed to assess the homogeneity and heterogeneity of tested
data. Test suites with an over-concentration of homogeneous tested
data could be seen as a potential problem.

4.6 Limitations
Our current dataset presents the tested values grouped by name.
There may exist other solutions to group the values, for example,
by type. This could be explored in future versions of the work.
Moreover, we analyze 11 build-in types: int, float, complex, bool,
str, list, tuple, range, frozenset, set, and dict (as detailed
in Section 2.1). For other complex objects, we keep track of their
types. As these objects are not necessarily serializable, we avoid any
possible issue caused by the inspection of the live objects during the
execution of the instrumented tests. We recall that having access
to the type of complex objects is important because Python is
dynamically typed, thus, types are only known at runtime. We plan
to expand the monitored types in further versions of TestDossier.

5 RELATEDWORK
Dynamic analysis is fundamental for multiple software engineering
tasks, such as software testing [7, 11, 21]. Unfortunately, few tools
have been created and made public to support developers extract-
ing information from software execution. Rabiser et al. [24] found
that most monitoring tools are not publicly available. In Python,
we find SpotFlow [17] and DynaPyt [9]. DynaPyt is a dynamic
analysis framework that offers hooks into specific kinds of runtime
events [9]. In this study, we rely on SpotFlow [17] due to its ex-
tension facility to create the proposed dataset. Multiple datasets
have been proposed in the context of software testing. For example,
Methods2Test [27] is a large dataset of focal methods mapped to
test cases extracted from Java projects. TestRoutes [20] is a test-to-
code traceability dataset containing the traceability information on
220 test cases, also in Java. Jbench [13] is a dataset of data races
for concurrency testing. Recently, a dataset with snapshot tests
was proposed to address the lack of data on this type of test [6].
TestDossier contributes to the software testing literature with a
novel dataset focused on exposing the runtime tested values.

6 CONCLUSION
This paper presented TestDossier, a dataset of tested values auto-
matically extracted from the execution of Python tests. To create
the dataset, we monitored the test suites of 15 Python Standard
Libraries. TestDossier contains 1,234 distinct argument/variable
names and 133,169 distinct values, leading to a total of 12,9M indi-
vidual values. We envision that TestDossier can help developers and
testers detect rarely tested values, untested values, and variations
of tested values. We also foresee that our dataset can support the
improvement of fake data generators and novel empirical studies
to expose the diversity of the tested data.
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