Exceptional Behaviors:
How Frequently Are They Tested?

Andre Hora
Department of Computer Science, UFMG
Belo Horizonte, Brazil
andrehora@dcc.ufmg.br

Abstract—Exceptions allow developers to handle error cases
expected to occur infrequently. Ideally, good test suites should
test both normal and exceptional behaviors to catch more bugs
and avoid regressions. While current research analyzes exceptions
that propagate to tests, it does not explore other exceptions
that do not reach the tests. In this paper, we provide an
empirical study to explore how frequently exceptional behaviors
are tested in real-world systems. We consider both exceptions that
propagate to tests and the ones that do not reach the tests. For this
purpose, we run an instrumented version of test suites, monitor
their execution, and collect information about the exceptions
raised at runtime. We analyze the test suites of 25 Python systems,
covering 5,372 executed methods, 17.9M calls, and 1.4M raised
exceptions. We find that 21.4% of the executed methods do raise
exceptions at runtime. In methods that raise exceptions, on the
median, 1 in 10 calls exercise exceptional behaviors. Close to
80% of the methods that raise exceptions do so infrequently, but
about 20% raise exceptions more frequently. Finally, we provide
implications for researchers and practitioners. We suggest devel-
oping novel tools to support exercising exceptional behaviors and
refactoring expensive try/except blocks. We also call attention
to the fact that exception-raising behaviors are not necessarily
“abnormal” or rare.

Index Terms—Software Testing, Exceptional Behaviors, Python

I. INTRODUCTION

Exceptions are a programming construct that allows devel-
opers to handle error cases expected to occur infrequently,
without cluttering the code with unnecessary if/else checks.
By using exceptions, developers can improve the program’s
robustness by enabling the detection, reporting, handling, and
correction of exceptional behaviors [1], [2]. Good test suites
should ideally test both normal and exceptional behaviors to
catch more bugs and avoid regressions [3]-[8]. However, in
practice, it is well-known that developers are more likely to
test normal behaviors than exceptional ones [8]-[19], which
may decay the test suite’s effectiveness in finding bugs [2].

Figure 1a shows method monthrange,! which returns the
weekday and number of days for a given year and month,
raising an exception when month is not between 1 and 12. This
method is called 221 times by its test suite, but only 3 calls
exercise the exception. In the case method monthrange is
directly called by a test, it should be verified with an assert—
Raises to check that the exception I1legalMonthError

Thttps://github.com/python/cpython/blob/950fab46/Lib/calendar.py#L161

Gordon Fraser
University of Passau
Passau, Germany
gordon.fraser @uni-passau.de

def monthrange(year, month):

"""Return weekday of first day of month (0-6 ~ Mon-Sun)
and number of days (28-31) for year, month."""

if not 1 <= month <= 12:
raise IllegalMonthError(month)

dayl = weekday(year, month, 1)

ndays = mdays[month] + (month == FEBRUARY and isleap(year))

return dayl, ndays

(a) Method monthrange (CPython). Exception I1legalMonth-
Error is rarely raised when executing the test suite.

def _has_surrogates(s):
"""Return True if s may contain surrogate-escaped binary data.™""
This check is based on the fact that unless there are surrogates, utf8
(Python's default encoding) can encode any string. This is the fastest
way to check for surrogates, see bpo-11454 (moved to gh-55663) for timings.
try:
s.encode()
return False
except UnicodeEncodeError:
return True

(b) Method _has_surrogates (CPython). Exception Unicode-
EncodeError is rarely raised when executing the test suite.

def _path_is_relative_to(path: pathlib.PurePath, base: str) —> bool:
Path.is_relative_to doesn't exist until Python 3.9
try:
path.relative_to(base)
return True
except ValueError:
return False

(c) Method _path_is_relative_to (Flask). Exception ValueError
is almost always raised when executing the test suite.

Fig. 1: Examples of methods with exceptional behaviors.

gets raised. Those tests are named “exceptional tests”, that
is, tests that expect exceptions to be raised [1], [2]. Method
monthrange is exercised by three exceptional tests.”

On the other hand, methods _has_surrogates® and
_path_is_relative_to* presented in Figures 1b and 1c
handle the raised exception with try/except blocks. Thus,
the raised exceptions do not propagate to the tests. That is,

Zhttps://github.com/python/cpython/blob/950fab46/Lib/test/test_calendar.
py#L894-1.906

3https://github.com/python/cpython/blob/950fab46/Lib/email/utils.py#L.47

“https://github.com/pallets/flask/blob/2fecOb20/src/flask/sansio/scaffold.py#
L709

from the test perspective, the exceptions UnicodeEncode—
Error and ValueError are unnoticed, and we are not
aware whether they get raised. One important difference
between both methods is the frequency of exception raising.
Method _has_surrogates is called 32,846 times by its
test suite, but the exception is raised only in 0.6% of the calls.
In contrast, method _path_is_relative_to raises the
exception in 98% of the calls (441 out of 448 calls). These
examples show that, at the method level, exceptions may be
frequently or infrequently raised at runtime. Moreover, when
running a test suite, multiple exceptions may be raised at
runtime, including the ones that are unnoticed by the tests
because they are handled locally. This means that a test suite
may exercise exceptional behaviors even without explicitly as-
serting on the raised exceptions (e.g., using assertRaises).

While prior research focuses on analyzing exceptions that
propagate to tests (i.e., exceptional tests [1], [2]), it does not
explore exceptions that are not propagated to tests. Moreover,
to our knowledge, no study has deeply explored the frequency
of exception-raising at runtime from the test perspective. A
better understanding of these aspects could provide insights
into how developers handle exceptional behaviors and help
drive the creation of novel testing tools.

In this paper, we provide an empirical study to explore
how frequently exceptional behaviors are tested in real-world
systems. We consider both exceptions that propagate to tests
and the ones that do not reach the tests. For this purpose,
we run an instrumented version of test suites, monitor their
execution, and collect information about the exceptions raised
at runtime. Specifically, we analyze the test suites of 25 Python
systems, covering 5,372 executed methods, 17.9M calls, and
1.4M raised exceptions. We propose three research questions
to explore exceptional behaviors:

« RQ1: How many methods raise exceptions at run-
time? 21.4% of the executed methods do raise exceptions
at runtime. On the median, methods that raise exceptions
are called 4x more often and execute 3x more paths than
those that do not raise exceptions.

« RQ2: How frequently do calls on exception-raising
methods actually lead to exceptions? In methods that
raise exceptions at runtime, 1 in 10 calls exercise ex-
ceptional behaviors on the median. Close to 80% of the
methods that raise exceptions do so infrequently, while
about 20% raise exceptions more frequently.

« RQ3: How do exception-raising methods and calls
vary by system? Most systems (22 in 25) contain more
exception-free than exception-raising methods. Moreover,
most systems (19 in 25) have a median proportion of
exception-raising calls per method below 30%.

Based on our results, we discuss practical implications.
First, we envision the development of novel tools to support
exercising exceptional behaviors more effectively. For exam-
ple, such tools could identify the tests that cover exceptional
cases, including exceptions not propagated to tests. Second, we
reveal that a test that exercises an exception-raising method

TABLE I: Selected systems.

System Short Description Methods Tests
Pylint static code analyzer 1,537 1,822
Rich rich text library 589 758
Error Corrector popular console error corrector 550 1,887
BentoML machine learning platform 319 169
Flask web framework 284 478
DateUtil date and time library 241 2,029
Requests HTTP library 174 578
Jupyter Client Jupyter protocol client APIs 138 87
Cookiecutter template handler 66 322
Six compatibility library 32 199
email email message manager 381 1,666
logging logging facility 215 208
argparse command-line interfaces 126 1,685
collections datatype container 112 111
pathlib OO filesystem paths 97 449
tarfile tar reading and writing 89 496
configparser configuration file parser 82 341
calendar calendar helpers 63 72
ftplib FTP protocol client 51 94
difflib diff library 47 51
imaplib IMAP4 protocol client 47 103
smtplib SMTP protocol client 43 82
0s operating system interfaces 41 316
gzip gzip reading and writing 32 61
csv CSV reading and writing 15 113
Total 5372 14,177

does not necessarily indicate it is testing an ‘“‘abnormal”
behavior. For some methods, raising an exception may be
part of the method’s “normal” behavior. Therefore, researchers
working on exceptional behavior testing [1], [2], [20]-[22]
should be aware of such methods to avoid failing to detect
abnormal behaviors. Third, we recommend a refactoring to re-
place expensive try/except blocks. We foresee that future
research on refactoring [23]-[28] could leverage the execution
frequency of some language constructors (e.g., try/except
blocks) to detect refactoring opportunities

Contributions. The contributions of this study are twofold.
First, we propose an empirical study to explore the frequency
of exception-raising at runtime from the test perspective. Sec-
ond, we provide implications for researchers and practitioners.

II. STUDY DESIGN
A. Case Studies

In this study, we aim to study real-world software systems.
Thus, we select Python systems that are largely adopted.
We focus on Python because it is among the most popular
programming languages nowadays,’ and it has a rich software
ecosystem. Table I presents the 25 selected systems. For a
larger diversity of projects, we select two types of systems:
(1) popular systems and (2) Python libraries.

Popular systems. The 10 selected systems presented at the top
of Table I have thousands of GitHub stars, millions of clients,
and, in some cases, billions of downloads, highlighting their
relevance.® For example, DateUtil is a date library used by

Shttps://www.tiobe.com/tiobe-index
SDownload values are based on PePy: https:/pepy.tech.

close to 1M GitHub projects. Pylint is the most popular code
analyzer in Python, with over 400M downloads. Rich is a text
library with 40K stars and around 200M downloads. Requests
is an HTTP library with 50K stars and 6,4B downloads. Flask
is a popular web framework, with 1,3M users on GitHub and
around 2B downloads. Cookiecutter is a template handler with
20K stars. Six is a compatibility library used by 1,5M projects
with 6,5B downloads. Lastly, Jupyter Client provides Jupyter
protocol client APIs, having around 500M downloads.
Python libraries. We also analyze the 15 libraries presented at
the bottom of Table I, which belong to the Python Standard
Library and are hosted on the CPython repository.

B. Monitoring Methods Executed by Tests

To extract information about exceptions raised at runtime,
we need to run an instrumented version of the test suite,
monitoring the method execution and collecting their raised
exceptions. For this purpose, we rely on SpotFlow [29], a
tool that performs dynamic analysis in Python and collects
runtime data, such as argument values, return values, and
raised exceptions at the method level. In short, this tool
is implemented with the support of the standard system’s
trace function sys.settrace [30], which is the basis for
performing runtime analysis in Python [31], [32]. The trace
function registers a hook that gets called at every executed line
of code and function call, allowing the recording of method-
level runtime data, such as calls and raised exceptions.

Therefore, with the support of SpotFlow, we run an instru-
mented version of the 25 selected test suites and detect that
5,372 application methods are executed, as detailed in Table I.

C. Collecting Data from Executed Methods and Calls

While monitoring the tests, we gather data on methods and
calls that raise exceptions at runtime.

Exception-raising methods: For each method, we record
whether it raises any exception at runtime. Methods that do
not raise exceptions are exception-free methods, while methods
that raise at least one exception are exception-raising methods.

Exception-raising calls: For each method call, we record
whether it results in an exception being raised, referring to
such calls as exception-raising calls. For each method, we
compute both the absolute and relative number of exception-
raising calls. The relative number is the ratio of exception-
raising calls to the total number of calls.

In total, the 5,372 executed methods receive 17.9M calls and
raise 1.4M exceptions at runtime. On the median, each exe-
cuted method receives 33 calls. This data is further explored
in our research questions. Our dataset is publicly available at:
https://doi.org/10.5281/zenodo.14187323.

D. Research Questions

We propose three research questions to explore exception-
raising frequency at runtime. In RQ1, we analyze how many
methods raise exceptions. In RQ2, we assess how frequently
calls lead to exceptions. RQ3 explores the variation of
exception-raising methods and calls per system. Rationale:

TABLE II: Summary of methods raising exceptions at runtime.

Categories # %
Exception-free methods 4222 78.6% ||
Exception-raising methods 1,150 21.4% [|

All 5372 100% R

TABLE III: Distribution of exception types.

Methods
1 2-3 49 10+
200 73 62 40 25

Total

Types of raised exceptions

Each research question addresses the frequency of the raised
exceptions at a distinct granularity level. RQ1 focuses on the
method level, while RQ2 on the call level. RQ3 analyzes
methods and calls but on the system level. A better under-
standing of these aspects could provide insights into how
developers handle exceptional behaviors, potentially guiding
the development of novel testing tools.

ITI. RESULTS
A. RQI: How many methods raise exceptions at runtime?

Considering the 25 selected Python systems, 5,372 appli-
cation methods are directly or indirectly executed by their
test suites. Among these methods, 21.4% (1,150) do raise
exceptions at runtime, while 78.6% (4,222) do not raise any
exceptions, as detailed in Table II.

Table III presents the distribution of the exception types of
raised exceptions. In total, we find that 200 distinct excep-
tion types are raised at runtime. Most exceptions are raised
by a single method (73 in 200). Moreover, 62 exceptions
are raised by 2-3 methods, 40 exceptions by 4-9 methods,
and only 25 exceptions by 10 or more methods. The most
raised exception types are the generic ones: ValueError,
GeneratorExit, TypeError, KeyError, and Stop—
Iteration. On the other hand, exception types raised by
single methods are very specific, such as SMTPSender-—
Refused, InvalidJSONError, EmptyHeaderError,
IllegalWeekdayError, and NoEmoji.

Figure 2 presents the distribution of method calls in
exception-free and exception-raising methods. On the median,
the methods that do not raise exceptions have 24 calls, while
those that do raise have 105 calls. The difference is statistically
significant (Mann-Whitney test, p-value < 0.05). Figure 3
details the distribution of executed paths in both groups. On
the median, the methods that do not raise exceptions execute 1
path, while those that do raise execute 3 paths. The difference
is statistically significant (p-value < 0.05).

Observation 1: 21.4% of the executed methods raise
exceptions at runtime. On the median, exception-
raising methods receive 4x more calls and execute 3x
more paths than exception-free methods

Method Calls at Runtime

o
o
o
o
o
2 3
[—
o
°
£
-
s v
9]
Qo
E o
=] o -
zZ n
1
24 05
o -
T 1
Exception—free methods Exception—raising methods
Fig. 2: Distribution of method calls at runtime.
Executed Paths at Runtime
ﬁ -
‘C_D -
(2]
<
T P
o
S
5 e
£
3
z
< -
3
o '
]

T T
Exception—free methods Exception—raising methods

Fig. 3: Distribution of executed paths at runtime.

B. RQ2: How frequently do calls on exception-raising meth-
ods actually lead to exceptions?

In this research question, we analyze the 1,150 methods
that raise exceptions at runtime. In the previous RQ, we saw
that these methods received a median of 105 calls. However,
naturally, not necessarily all these calls raise exceptions at
runtime. Therefore, here, we focus on the method calls that
actually lead to an exception being raised.

Figure 4 presents the distribution of method calls raising
exceptions at runtime in both absolute (left-side) and relative
(right-side) values. On the median, exception-raising methods
receive 4 calls that raise exceptions (the first quartile is 2 calls,
and the third quartile is 18 calls). In such methods, on the
median, 10% of the calls are exception-raising. This means
that 1 in 10 calls cover exceptional behaviors. In this case,
the first quartile is 1%, while the third quartile is 48%. The
first quartile in 1% states that in 25% of the exception-raising

Method Calls Raising Exceptions
at Runtime (absolute)

Method Calls Raising Exceptions
at Runtime (ratio)

100
I

40
L
80
L

30
L

60

40

10
L
20
L

10

4

Ratio of method calls raising exceptions (%)

Number of method calls raising exceptions
20
L

0
|

Exception-raising methods Exception-raising methods

Fig. 4: Distribution of the method calls raising exceptions at
runtime (absolute and relative values).

TABLE IV: Frequency of exception-raising calls.

Frequency Exception-Raising Calls #Methods %

Rare < 10% 576 50.0%
Occasional > 10% and < 50% 327 28.4%
Common > 50% and < 90% 111 9.6%
Almost always > 90% 136 11.8%
All - 1,150 100%

methods, at most 1 in 100 calls raise an exception.

Observation 2: In methods that raise exceptions, on
the median, 1 in 10 calls exercise exceptional behav-
iors. Each exception-raising method receives a median
of 4 calls that cover exceptions.

Table IV groups the exception-raising methods into four
categories according to their frequency of exception-raising
calls: rare, occasional, common, and almost always. Methods
that raise exceptions in at most 10% of their calls are cate-
gorized as rarely raising exceptions. Most exception-raising
methods fall into this category, which includes 50% (576)
of the analyzed methods. Methods that raise exceptions in
more than 10% and up to 50% of their calls are classified
as occasionally raising exceptions. We find that 28.4% (327)
of the methods raise exceptions occasionally. Methods that
raise exceptions in more than 50% but less than 90% of their
calls are categorized as commonly raising exceptions, while
methods that raise exceptions in 90% or more are classified
as almost always raising exceptions. Only 9.6% (111) of
the methods commonly raise exceptions, while 11.8% (136)
almost always raise exceptions.

Observation 3: Close to 80% of the methods that raise
exceptions at runtime do so infrequently, while only
about 20% raise exceptions more frequently.

Table V presents multiple examples of exception-raising
methods and their calls in each category. Next, we briefly
discuss some interesting examples.

Rarely raising exceptions: This category includes meth-

TABLE V: Examples of methods by frequency of exception-raising calls.

Exception-Raising Calls

Frequency Method System #Calls
%
pylint.checkers.base_checker.BaseChecker.create_message_definition_from_tuple pylint 1,279,848 1 <1%
email._header_value_parser.get_ttext email 9,188 1 <1%
tarfile. TarInfo._decode_pax_field tarfile 25,092 194 1%
requests.utils._validate_header_part requests 1,838 15 1%
Rare dateutil.parser._parser.parser.parse dateutil 1,160 36 3%
rich.live.Live.start rich 26 1 4%
rich.console.Console.rule rich 20 1 5%
flask.templating.render_template flask 32 2 6%
requests.sessions.Session.get requests 34 3 9%
cookiecutter.repository.determine_repo_dir cookiecutter 50 5 10%
cookiecutter.generate.apply_overwrites_to_context cookiecutter 19 2 11%
flask.scaffold.Scaffold.get flask 9 1 11%
pathlib.Path.touch pathlib 17 2 12%
flask.app.Flask.url_for flask 42 7 17%
Occasional collections.namedtuple collections 55 11 20%
logging.config._install_handlers logging 17 4 24%
requests.utils.is_ipv4_address requests 52 15 29%
argparse.ArgumentParser.parse_known_args argparse 4,432 1,347 30%
pylint.checkers.classes.class_checker.ClassChecker.visit_functiondef pylint 3,521 1,247 35%
pathlib.PurePath.relative_to pathlib 303 140 46%
pathlib.PurePath.__hash__ pathlib 12,414 6,384 51%
cookiecutter.zipfile.unzip cookiecutter 16 9 56%
pylint.testutils._run._add_rcfile_default_pylintrc pylint 425 246 58%
configparser.RawConfigParser._get_conv configparser 1,274 765 60%
Common pylint.checkers.stdlib.StdlibChecker._check_open_call pylint 135 84 62%
pathlib.Path.mkdir pathlib 490 316 64%
pathlib.PurePath.with_suffix pathlib 91 63 69%
cookiecutter.replay.load cookiecutter 4 3 75%
pathlib.Path.samefile pathlib 20 16 80%
dateutil.parser._parser.parser._parse dateutil 1,160 1,013 87%
pathlib.Path.rglob pathlib 219 200 91%
email._header_value_parser.get_address email 334 306 92%
pylint.utils.file_state.FileState.set_msg_status pylint 3,564 3,384 95%
requests.utils.get_auth_from_url requests 273 264 97%
Almost six.MovedModule.__getattr__ six 41 40 98%
Always email.message.Message._get_params_preserve email 958 945 99%
pathlib._RecursiveWildcardSelector._iterate_directories pathlib 6,085 6,025 99%
argparse._ActionsContainer._handle_conflict_error argparse 4 4 100%
email.header._ValueFormatter._maxlengths email 56 56 100%
pylint.utils.utils.get_module_and_frameid pylint 3,618 3,618 100%

ods that raise exceptions in at most 10% of their calls.
The rarest exception found in our dataset happens in the
Pylint method create_message_definition_from_ -
tuple.7 This method receives over 1,2 million calls, but
only one call raises the InvalidMessageError due to
a malformed message. Method get_ttext® of the email
library in CPython is another interesting example (as presented
in Figure 5). This method receives 9,188 calls, but only one
call raises the exception HeaderParseError due to an
empty string passed to the parameter value. Overall, this
category includes methods in which raising the exception is a
rare phenomenon.

Occasionally raising exceptions: This category includes
methods that raise exceptions in more than 10% and up to

7https://github.com/pylint-dev/pylint/blob/c25923f3/pylint/checkers/base_
checker.py#L 182

8https://github.com/python/cpython/blob/e6dd7 1da/Lib/email/_header_
value_parser.py#L.2258

50% of their calls. As an example, we present the Requests
method is_ipv4_address’ (Figure 6). This method re-
ceives 52 calls, from which 15 (29%) raise the exception
OSError, indicating that the parameter string_ip is an
invalid IPv4. Differently from the previous two examples (in
which a single and rare call covered the exception), here,
we see multiple exception-raising calls. In this case, the
15 raised exceptions happened due to the following inputs:
“localhost.localdomain” (7 inputs), “www.requests.com” (4
inputs), “google.com” (3 inputs), and “8.8.8.8.8” (1 input). It
is interesting to note that 2 out of the 15 exception-raising calls
come directly from test TestIsIPv4Address.test_-—
invalid.!” In contrast, the other 13 exception-raising calls
come indirectly from other tests, making them harder to track
from the test perspective.

Commonly raising exceptions: This category includes

9https://github.com/psf/requests/blob/7335bbf4/src/requests/utils. py#L711
10https://github.com/pst/requests/blob/7335bbf4/tests/test_utils.py#L261

def get_ttext(value):
"""ttext = <matches _ttext_matcher>

We allow any non-TOKEN_ENDS in ttext, but add defects to the token's
defects list if we find non-ttext characters. We also register defects for
any non-printables even though the RFC doesn't exclude all of them,
because we follow the spirit of RFC 5322.

m = _non_token_end_matcher(value)
if not m:

raise errors.HeaderParseError(

"expected ttext but found '{}'".format(value))

ttext = m.group()
value = value[len(ttext):]
ttext = ValueTerminal(ttext, 'ttext')
_validate_xtext(ttext)
return ttext, value

Fig. 5: Method get_ttext of the email library in CPython. Calls:
9,188; exception-raising calls: 1 (<1%).

def is_ipv4_address(string_ip):

:rtype: bool

try:
socket.inet_aton(string_ip)
except OSError:
return False
return True

Fig. 6: Method is_ipv4_address of Requests. Calls: 52;
exception-raising calls: 15 (29%).

methods that raise exceptions in more than 50% but less
than 90% of their calls. Method with suffix!' of the
pathlib library in CPython presents an example in this category
(Figure 7). This method returns a new path with the file
suffix changed, performing several validations in the parameter
suffix. Method with_suffix receives 91 calls, from
which 63 (69%) raise the exception ValueError, indicating
a problem in the suffix. Unlike the previous two categories,
here, raising the exception is more common than not raising it.
In fact, the presented method in Figure 7 is more “defensive”
in its implementation, with three raise statements.

Almost always raising exceptions: This category in-
cludes methods that raise exceptions in 90% or more
of their calls. We present two Pylint methods: set_-
msg_status12 and get_module_and_frameid.13 In
method set_msg_status (Figure 8), 3,384 in 3,564 (95%)
calls raise the exception KeyError. Figure 9 presents an
even more strict case: 100% (all 3,618) of the calls to
method get_module_and_frameid raise the exception
AttributeError. In this case, raising the exception is a

https://github.com/python/cpython/blob/Oc5fc272/Lib/pathlib.py#L770

2https://github.com/pylint-dev/pylint/blob/c25923f3/pylint/utils/file_state.
py#L184

Bhttps://github.com/pylint-dev/pylint/blob/c25923f3/pylint/utils/utils.py#
L103

def with_suffix(self, suffix):
"""Return a new path with the file suffix changed. If the path
has no suffix, add given suffix. If the given suffix is an empty
string, remove the suffix from the path.
f = self._flavour
if f.sep in suffix or f.altsep and f.altsep in suffix:
raise ValueError("Invalid suffix S%r" % (suffix,))
if suffix and not suffix.startswith('.') or suffix == '.':
raise ValueError("Invalid suffix %r" % (suffix))
name = self.name
if not name:
raise ValueError("sr has an empty name" % (self,))
old_suffix = self.suffix
if not old_suffix:
name = name + suffix
else:
name = name[:-len(old_suffix)] + suffix
return self._from_parsed_parts(self._drv, self._root,
self._parts[:-1] + [name])

Fig. 7: Method with_suffix of the pathlib library in CPython.
Calls: 91; exception-raising calls: 63 (69%).

terminating condition for the while loop. It is interesting to
note that in such methods, the “normal” behavior is actually
to raise the exception. That is, the methods are implemented
in such a way that raising is part of the expected behavior.

def set_msg_status(
self,
msg: MessageDefinition,
line: int,
status: bool,
scope: str = "package",
) —> None:
"""Set status (enabled/disable) for a given message at a given line."""
assert line > 0
if scope != "line":
Expand the status to cover all relevant block lines
self._set_state_on_block_lines(
self._msgs_store, self._module, msg, {line: status}
)
else:
self._set_message_state_on_line(msg, line, status, line)

Store the raw value
try:

self._raw_module_msgs_state[msg.msgid] [line] = status
except KeyError:

self._raw_module_msgs_state[msg.msgid] = {line: status}

Fig. 8: Method set_msg_status of Pylint. Calls: 3,564;
exception-raising calls: 3,384 (95%).

Observation 4: Typically, exception-raising at runtime
is a rare phenomenon and indicates “abnormal” be-
haviors. However, in some cases, exception-raising is
frequent and represents “normal” behaviors.

C. RQ3: How do exception-raising methods and calls vary by
system?

In this last RQ, we explore the variation of exception-
raising methods, and calls vary per system. Table VI de-

def get_module_and_frameid(node: nodes.NodeNG) —> tuplelstr, strl:
"""Return the module name and the frame id in the module."""
frame = node.frame()

", 0

module, obj ="
while frame:
if isinstance(frame, Module):
module = frame.name
else:
obj.append(getattr(frame, "name", "<lambda>"))
try:
frame = frame.parent.frame()
except AttributeError:
break
obj.reverse()
return module, ".".join(obj)

Fig. 9: Method get_module_and_frameid of Pylint. Calls:
3,618; exception-raising calls: 3,618 (100%).

tails the exception-raising methods and calls per system.
Column “Exception-Raising Methods” presents the absolute
(#) and relative (%) number of exception-raising methods.
Column “Exception-Raising Calls” presents the distribution
of exception-raising calls for the exception-raising methods,
detailing the first quartile (Q1), second quartile (Q2), and third
quartile (Q3). For example, Table VI shows that Pylint’s tests
execute 1,537 methods, of which 273 (17.8%) are exception-
raising. Among these 273 exception-raising methods, the me-
dian proportion of exception-raising calls is 7%, with a first
quartile of 1% and a third quartile of 50%.

Exception-raising methods: Overall, we notice a large
variation in the ratio of exception-raising methods per system,
ranging from 5.6% to 53.3%. The system with the smallest
proportion of exception-raising methods is Error Corrector,
with 5.6% (31 out of 550 methods), while the system with the
largest proportion is csv, with 53.3% (8 out of 15 methods).

It is worth noting that only 3 out of 25 systems (Cookiecut-
ter, configparser, and csv) have 50% or more exception-raising
methods. In contrast, the remaining 22 systems have less than
50% exception-raising methods. Among those, two systems
have less than 10%.

Observation 5: The majority of systems (22 out of 25)
contain more exception-free methods than exception-
raising methods.

Exception-raising calls: We also find a large variation
in the proportion of exception-raising calls. The median of
exception-raising calls per method varies from 1% (calendar)
to 100% (Jupyter Client), the first quartile varies from <1%
(logging, argparse, and tarfile) to 21% (Jupyter Client), and
the third quartile varies from 3% (gzip) to 100% (Jupyter
Client). Among the 25 systems, 19 (76%) have a median
value of less than 30%, while only 6 systems (24%) have
a median value greater than 30%. Notice that not all systems
have an equivalent number of exception-raising methods. For
instance, Pylint has 273 exception-raising methods, while

calendar has only 4. Consider only the top-5 systems with
the most exception-raising methods: Pylint (273), email (120),
Flask (78), Rich (73), and Dateutil (63). In this case, the
median of exception-raising calls per method is much smaller,
ranging from 4% (email) to 15% (Flask).

Observation 6: Most systems (19 out of 25) have
a median proportion of exception-raising calls per
method below 30%.

IV. DISCUSSION AND IMPLICATIONS

A. Most Exceptional Behaviors Are Rarely Exercised

The literature reports that developers are more likely to test
expected behaviors than unexpected ones, such as exceptional
behaviors [8]-[18]. In this study, we contribute to this research
line by showing that most methods that raise exceptions at
runtime do so infrequently. In other words, given a method
that raises an exception at runtime under specific conditions,
it is likely that such an exception will rarely be triggered
by the existing test suite. For example, we find that 50% of
the exception-raising methods actually raise exceptions in at
most 10% of their calls. This can be problematic because the
fact that error handling code such as exceptions are not often
executed makes them a natural place to hide bugs [18], [33].

Implication 1: We envision the development of novel tools
to support exercising exceptional behaviors more effectively.
For example, such tools could identify the tests that cover
exceptional cases, including exceptions not propagated to tests.
Such tools could alert developers whether exceptional cases
are adequately tested or missing in the test suite.

B. Some Exceptional Behaviors Are Frequently Exercised

The majority of methods that raise exceptions at runtime do
so infrequently. However, some methods actually present the
opposite behavior: they raise exceptions more frequently. That
is, given a method that raises an exception at runtime, in rare
cases, the exception is frequently triggered by the existing test
suite. For example, we find that 11.8% of the exception-raising
methods raise exceptions in 90% or more of their calls. For
such methods, the “normal” behavior is to raise the exception.

One factor that may explain such a variation is the origin
of the exception. For example, exceptions can be explicitly
raised by the system under test (as in Figure 1a), or implicitly
raised by external dependencies or standard libraries (as in
Figure 1b) [2], [34]. An exception raised directly by the
system seems more relevant and testable behavior, whereas
an exception raised somewhere deeper in the call stack may
indicate less direct relevance.

Although we did not deeply explore the origin of the
exceptions, RQ1 provides initial insights in this direction.
Table IIT shows that most exceptions are raised by up to three
methods, suggesting they are potentially specific, like the ones
originating from the system under test (e.g., SMTPSender—
Refused). In contrast, a few exceptions are raised by ten

TABLE VI: Exception-raising methods and calls by system. Q1: first quartile; Q2: second quartile (median); Q3: third quartile

System Executed Exception-Raising Methods Exception-Raising Calls (%)

Methods # % Q1 Q2 Q3
Pylint 1,537 273 17.8% 1% 7% 50%
Rich 589 73 12.4% 1% 7% 29%
Error Corrector 550 31 5.6% 18.5% 50% 80%
BentoML 319 56 17.6% 8% 27% 72%
Flask 284 78 27.5% 4% 15% 70%
Dateutil 241 63 26.1% 2% 9% 22%
Requests 174 44 25.3% 2% 12.5% 34%
Jupyter Client 138 31 22.5% 21% 100% 100%
Cookiecutter 66 35 53% 6% 12% 31%
Six 32 7 21.9% 1% 60% 99%
email 381 120 31.5% 1% 4% 25%
logging 216 49 22.7% <1% 5% 24%
argparse 126 38 30.2% <1% 2% 31%
collections 112 26 23.2% 9% 58% 100%
pathlib 97 42 43.3% 7% 41.5% 62%
tarfile 89 33 37.1% <1% 5% 19%
configparser 82 41 50% 2% 8% 23%
calendar 63 4 6.3% 1% 1% 11%
ftplib 51 21 41.2% 1% 4% 33%
difflib 47 9 19.1% 16% 22% 44%
imaplib 47 18 38.3% 3% 4% 18%
smtplib 43 19 44.2% 4% 8% 31%
os 41 20 48.8% 10% 45% 75%
gzip 32 11 34.4% 1% 2% 3%
csv 15 8 53.3% 2% 9% 71%
All 5,372 1,150 21.4% 1% 10% 48%

or more methods, indicating they are generic, like the ones
originating from standard libraries (e.g., ValueError).

Implication 2: We call attention to the fact that exception-
raising behaviors are not necessarily “abnormal” or rare. The
fact that a test exercises a method that raises exceptions does
not necessarily indicate it is testing an “abnormal” behavior.
Raising an exception may simply be part of the method’s “nor-
mal” behavior. Researchers working on exceptional behavior
testing [1], [2], [20]-[22] should be aware of such methods
to avoid failing to detect abnormal behaviors. In such cases,
it would be important to consider other factors, such as the
origin of the raised exceptions (i.e., SUT or external).

C. Refactoring Expensive try/except Blocks

Our results show that different exception-raising meth-
ods may have distinct frequencies of exception-raising calls,
ranging from rare to almost always. One explanation may
be the Python coding style EAFP (easier to ask for for-
giveness than permission), which assumes the existence of
valid keys or attributes, catching the exceptions KeyError
or AttributesError if the assumption proves false.'*
According to the Python documentation, this coding style is
characterized by the presence of many try/except blocks.
However, note that try/except blocks are very efficient
when no exceptions are raised, but catching an exception is
actually expensive.'” Thus, a try/except block that checks
the existence of a key should expect the dictionary to have the

https://docs.python.org/3/glossary.html#term-EAFP
https://docs.python.org/3/fag/design.html#how-fast-are-exceptions

key almost all the time and rarely raise the exception. This
way, one possible refactoring is replacing such try/except
blocks with more efficient solutions, e.g., checking the key
existence with the in keyword in 1 f/else blocks.

Interestingly, we find that many methods commonly raise
the exceptions KeyError and AttributesError, in-
dicating they are candidates to be refactored. For exam-
ple, Figure 10 shows four methods of project DateUtil
that frequently raise KeyError: ampm (it raises exceptions
in 96% of the calls), hms (96%), weekday (83%), and
month (75%).' Another extreme case happens in method
_infer_dunder_doc_attribute!” of project Pylint. In
this method, the exception KeyError happens in 99.9%
(2,729 of 2,731) of the calls. Therefore, such methods could
be refactored to check the existence of the key using the in
keyword and 1f/else blocks to increase efficiency.

Implication 3: try/except blocks that frequently raise
exceptions at runtime when checking the existence of keys
or attributes are strong candidates for refactoring. Our study
can spot those less efficient t ry/except blocks that can be
replaced by more efficient 1 f/else blocks checking the key
existence. In this context, we envision that future research in
the context of refactoring [23]-[28] could leverage the execu-
tion frequency of language constructors (e.g., try/except
blocks) to detect novel refactoring opportunities.

16https://github.com/dateutil/dateutil/blob/9eaaSde584f9f374/src/dateutil/
parser/_parser.py#1.322-1.346

7https://github.com/pylint-dev/pylint/blob/5c59b48acb5e0c8e/pylint/
checkers/base/docstring_checker.py#L.32-L35

def weekday(self, name):
try:
return self._weekdays[name. lower()]
except KeyError:
pass
return None

def month(self, name):
try:
return self._months[name.lower()] + 1
except KeyError:
pass
return None

def hms(self, name):
try:
return self._hms[name. lower()]
except KeyError:
return None

def ampm(self, name):
try:
return self._ampm[name. lower()]
except KeyError:
return None

Fig. 10: Methods that frequently raise the exception Key-—
Error. The try/except blocks can be replaced by
if/else blocks to increase efficiency.

V. THREATS TO VALIDITY

Origin of the exceptions. One factor that may affect the
variation of the exception-raising methods and calls is their
origin. For example, exceptions directly raised by the SUT
seem more relevant and testable than those raised by third-
party libraries and propagated to the SUT [2], [34]. Although
we provided initial insights into the type of exceptions, further
studies are needed to better understand the effects of the origin
of the exceptions.

Public APIs and implementation details. In this study, we do
not distinguish between public APIs (e.g., public methods) and
implementation details (e.g., private or internal methods) when
exploring the exceptions raised at runtime. Implementation
details exist to support public APIs [35]. While public APIs
should be well-tested, implementation details can sometimes
be indirectly tested by public APIs [35]. However, complex
implementation details can be directly tested in test suites [35].
Further studies are needed to explore the differences between
exception-raising in public APIs and implementation details.
Generalization of the results. In this study, we analyzed
exception-raising from 25 popular and real-world Python test
suites. Despite these observations, our findings — as usual in
empirical software engineering — cannot be directly general-
ized to other systems or implemented in other programming
languages. Further studies should be performed on other
software ecosystems and programming languages.

VI. RELATED WORK

Overall, the literature agrees that developers are more likely
to test normal behaviors than abnormal ones [8]-[19]. This
happens because the expected behavior of the program is often
simpler to test. Another factor is that developers may lack test
expertise, focusing on only testing the “happy cases” [12].
In an experiment with developers, Teasley et al. [9] found
evidence of using a positive test strategy (i.e., testing the ex-
pected behavior), which was partially mitigated by increasing
the expertise of the developers.

Many studies explore exceptional behaviors from the test
perceptive [1], [2], [18], [20]-[22], [36]. Goffi et al. cre-
ated test oracles for exceptional behaviors from Javadoc
comments [18]. The authors also reported that exceptional
behaviors are poorly covered by tests. Lima et al. explored
exception handling testing practices in Java libraries and found
that catch blocks are less covered [20]. Marcilio and Furia
provided a large-scale empirical study of exceptional tests in
Java, that is, tests that may trigger exceptional behaviors [2].
The authors analyze multiple patterns Java developers can use
to write exceptional tests and detect several characteristics
of such tests. For example, exceptional tests represent 13%
of all tests, tend to be larger, and are mostly written using
try/catch blocks. In this context, Dalton et al. [1] analyzed
exceptional behavior testing in Java, that is, tests that expect
exceptions to be raised. The results showed that 60.9% of
the projects have at least one test dedicated to verifying
exceptional behavior, concluding that exceptional behavior
testing is a rare phenomenon. In common, both studies [1],
[2] explore the tests that expect exceptions to be raised.

Despite the various studies on exceptional behavior testing,
they are mainly concentrated on analyzing raised exceptions
that propagated to tests. Our study provides a complementary
perspective: we analyzed all raised exceptions at runtime, not
only the ones that propagate to tests. Furthermore, we deeply
explored the frequency of raised exceptions at runtime, which
is not the focus of any prior study.

VII. CONCLUSION

We provided an empirical study to explore how frequently
exceptional behaviors are tested in real-world systems. We
analyzed the test suites of 25 Python systems, covering 5,372
executed methods, 17.9M calls, and 1.4M raised exceptions.
Our main findings can be summarized as follows: (1) 21.4%
of the executed methods do raise exceptions at runtime; (2)
in methods that raise exceptions, on the median, 1 in 10
calls exercise the exceptional behaviors; and (3) close to
80% of the methods that raise exceptions at runtime do so
infrequently, while only about 20% raise exceptions more
frequently; and (4) most systems contain more exception-
free methods than exception-raising methods. Based on our
results, we discussed practical implications for researchers and
practitioners, including the development of novel tools to more
effectively support exercising exceptional behaviors and the
refactoring of expensive try/except blocks.

In future work, we plan to perform more qualitative analysis
on the analyzed methods, calls, and exceptions, for example,
by exploring the origin of the raised exceptions (i.e., SUT or
external) [2], [34] and whether they come from public APIs or
implementation details [35]. We also intend to develop tools
to identify the tests that cover exceptional cases, including
exceptions not propagated to tests. Finally, we plan to provide
an empirical study to quantify and qualify the refactoring to
replace expensive try/except blocks.

ACKNOWLEDGMENTS
This research is supported by CAPES, CNPq, and
FAPEMIG.
REFERENCES
[1] F. Dalton, M. Ribeiro, G. Pinto, L. Fernandes, R. Gheyi, and B. Fonseca,

[2]

[3]

[4]

[6]

[7]
[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

“Is exceptional behavior testing an exception? An empirical assessment
using Java automated tests,” in International Conference on Evaluation
and Assessment in Software Engineering, 2020, pp. 170-179.

D. Marcilio and C. A. Furia, “How java programmers test exceptional
behavior,” in International Conference on Mining Software Repositories.
IEEE, 2021, pp. 207-218.

S. C. Reid, “An empirical analysis of equivalence partitioning, boundary
value analysis and random testing,” in International Software Metrics
Symposium. 1EEE, 1997, pp. 64-73.

C. Kaner, S. Padmanabhan, and D. Hoffman, The Domain Testing
Workbook. Context Driven Press, 2013.

M. Aniche, Effective Software Testing: A developer’s guide.
Schuster, 2022.

V. Khorikov, Unit Testing Principles, Practices, and Patterns.
and Schuster, 2020.

T. Winters, H. Wright, and T. Manshreck, “Software Engineering at
Google: Lessons Learned from Programming over Time,” 2020.

M. Aniche, C. Treude, and A. Zaidman, “How developers engineer
test cases: An observational study,” IEEE Transactions on Software
Engineering, vol. 48, no. 12, pp. 4925-4946, 2021.

B. E. Teasley, L. M. Leventhal, C. R. Mynatt, and D. S. Rohlman,
“Why software testing is sometimes ineffective: Two applied studies of
positive test strategy,” Journal of Applied Psychology, vol. 79, no. 1, p.
142, 1994.

I. Salman, B. Turhan, and S. Vegas, “A controlled experiment on time
pressure and confirmation bias in functional software testing,” Empirical
Software Engineering, vol. 24, no. 4, pp. 1727-1761, 2019.

A. Causevic, R. Shukla, S. Punnekkat, and D. Sundmark, “Effects of
negative testing on TDD: An industrial experiment,” in International
Conference on Agile Processes in Software Engineering and Extreme
Programming. Springer, 2013, pp. 91-105.

S. H. Edwards and Z. Shams, “Do student programmers all tend to write
the same software tests?” in Conference on Innovation & technology in
Computer Science Education, 2014, pp. 171-176.

R. Mohanani, I. Salman, B. Turhan, P. Rodriguez, and P. Ralph,
“Cognitive biases in software engineering: a systematic mapping study,”
IEEE Transactions on Software Engineering, vol. 46, no. 12, pp. 1318—
1339, 2018.

L. M. Leventhal, B. M. Teasley, D. S. Rohlman, and K. Instone,
“Positive test bias in software testing among professionals: A review,” in
International Conference on Human-Computer Interaction. Springer,
1993, pp. 210-218.

L. Bijlsma, N. Doorn, H. Passier, H. Pootjes, and S. Stuurman, “How do
students test software units?” in International Conference on Software
Engineering: Software Engineering Education and Training. 1EEE,
2021, pp. 189-198.

Simon and

Simon

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]
[33]
[34]
[35]

[36]

V. Garousi and B. Kiiciik, “Smells in software test code: A survey of
knowledge in industry and academia,” Journal of Systems and Software,
vol. 138, pp. 52-81, 2018.

G. R. Bai, J. Smith, and K. T. Stolee, “How students unit test:
Perceptions, practices, and pitfalls,” in ACM Conference on Innovation
and Technology in Computer Science Education, 2021, pp. 248-254.
A. Goffi, A. Gorla, M. D. Ernst, and M. Pezze, “Automatic generation
of oracles for exceptional behaviors,” in International Symposium on
Software Testing and Analysis, 2016, pp. 213-224.

A. Hora, “Monitoring the execution of 14k tests: Methods tend to have
one path that is significantly more executed,” in International Conference
on the Foundations of Software Engineering, 2024, pp. 532-536.

L. P. Lima, L. S. Rocha, C. I. Bezerra, and M. Paixao, “Assessing
exception handling testing practices in open-source libraries,” Empirical
Software Engineering, vol. 26, no. 5, p. 85, 2021.

J. Zhang, Y. Liu, P. Nie, J. J. Li, and M. Gligoric, “Generating
exceptional behavior tests with reasoning augmented large language
models,” arXiv preprint arXiv:2405.14619, 2024.

H. Yoshioka, Y. Higo, S. Matsumoto, S. Kusumoto, S. Itoh, and P. T. T.
Huyen, “Do exceptional behavior tests matter on spectrum-based fault
localization?” in International Conference on Product-Focused Software
Process Improvement. Springer, 2023, pp. 399-414.

N. Tsantalis and A. Chatzigeorgiou, “Identification of move method
refactoring opportunities,” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 347-367, 2009.

J. Al Dallal, “Identifying refactoring opportunities in object-oriented
code: A systematic literature review,” Information and software Tech-
nology, vol. 58, pp. 231-249, 2015.

E. A. AlOmar, A. Venkatakrishnan, M. W. Mkaouer, C. Newman, and
A. Ouni, “How to refactor this code? an exploratory study on developer-
chatgpt refactoring conversations,” in International Conference on Min-
ing Software Repositories, 2024, pp. 202-206.

A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo,
and J. M. Zhang, “Large language models for software engineering:
Survey and open problems,” in International Conference on Software
Engineering: Future of Software Engineering. 1EEE, 2023, pp. 31-53.
D. Pomian, A. Bellur, M. Dilhara, Z. Kurbatova, E. Bogomolov,
T. Bryksin, and D. Dig, “Together We Go Further: LLMs and
IDE Static Analysis for Extract Method Refactoring,” arXiv preprint
arXiv:2401.15298, 2024.

A. Shirafuji, Y. Oda, J. Suzuki, M. Morishita, and Y. Watanobe, “Refac-
toring programs using large language models with few-shot examples,”
in Asia-Pacific Software Engineering Conference. 1EEE, 2023, pp.
151-160.

A. Hora, “SpotFlow: Tracking Method Calls and States at Runtime,”
in International Conference on Software Engineering: Companion Pro-
ceedings, 2024, pp. 35-39.

sys.settrace, https://docs.python.org/3/library/sys.html#sys.settrace,
November, 2024.

A. Hora, “What code is deliberately excluded from test coverage and
why?” in International Conference on Mining Software Repositories,
2021, pp. 392-402.

——, “Excluding code from test coverage: practices, motivations, and
impact,” Empirical Software Engineering, vol. 28, no. 1, p. 16, 2023.
Fix error handling first, https://nedbatchelder.com/text/fix-err-hand.html,
November, 2024.

S. McConnell, Code Complete. Pearson Education, 2004.

Prefer Testing Public APIs Over Implementation-Detail Classes, https://
testing.googleblog.com/2015/01/testing-on-toilet- prefer-testing-public.
html, November, 2024.

C. Artho, A. Biere, and S. Honiden, “Enforcer—efficient failure injec-
tion,” in International Symposium on Formal Methods. Springer, 2006,
pp. 412-427.

