Empirical Software Engineering manuscript No.
(will be inserted by the editor)

How and Why Developers Implement OS-Specific Tests

Ricardo Job . Andre Hora

Received: date / Accepted: date

Abstract Context. Real-world software systems are often tested in multiple
operating systems (OSs). Consequently, developers may need to handle specific
OS requirements in tests. For example, different OSs have distinct file path
name conventions (e.g., between Windows and Unix), thus, the tests should be
adapted to run differently depending on whether the OS is Windows or Unix.
In this context, an OS-specific test is a test that identifies the OS it will be ex-
ecuted. OS-specific tests may execute different lines of code of the application
depending on the OS they are running. Objective. In this paper, we provide
the first empirical study to assess OS-specific tests, exploring how and why de-
velopers implement this kind of test. This knowledge can help us understand
OS-specific tests and the challenges faced by developers when testing for mul-
tiple operating systems. Method. We mine 100 popular Python systems and
assess their OS-specific tests both quantitatively and qualitatively. We propose
five research questions to assess the frequency, location, target, operations, and
reasons. Results. (1) We find that OS-specific tests are common: 56% of the
analyzed Python projects have OS-specific tests and Windows is the most
targeted OS. (2) We detect that OS verification happens more frequently in
test decorators (65%) than in test code (35%). (3) OS-specific tests target a
diversity of code, including file/directory, network, and permission/privilege.
(4) Developers may perform multiple operations in OS-specific tests, including
calling OS-specific APIs, mocking OS-specific objects, and suspending execu-
tion. (5) We find that OS-specific tests are implemented mostly to overcome
unavailable external resources, unsupported standard libraries, and flaky tests.

Ricardo Job

Unidade de Informédtica, Instituto Federal da Paraiba (IFPB), Cajazeiras, Brazil,
Department of Computer Science, Universidade Federal de Minas Gerais (UFMG), Belo
Horizonte, Brazil, E-mail: ricardo.job@ifpb.edu.br

Andre Hora
Department of Computer Science, Universidade Federal de Minas Gerais (UFMG), Belo
Horizonte, Brazil, E-mail: andrehora@dcc.ufmg.br



2 Ricardo Job, Andre Hora

Conclusions. Finally, based on our findings, we discuss practical implications
for practitioners and researchers, including the relation of OS-specific tests
with test smells, CI/CD, technical debt, and flaky tests. We also discuss the
efforts to test on Windows properly and propose a novel refactoring to improve
some instances of OS-specific tests.

Keywords Software Testing - Test Smells - Technical Debt - Python - Mining
Software Repositories

1 Introduction

Software testing is a key activity in modern software development. Having a
good test suite is fundamental to ensuring software quality and sustainable
software evolution [6, 18,19, 25]. When software systems grow over time and
become more complex, test suites should also evolve to accommodate novel
tests and requirements [43].

In practice, real-world software systems are often tested in multiple operat-
ing systems (OSs). For this purpose, developers may need to handle specific OS
requirements in tests. For example, different operating systems have distinct
path name conventions, mainly between Windows and Unix-style paths. Thus,
developers should adapt the tests to run differently depending on whether the
OS is Windows or Unix. In this context, an OS-specific test is a test that
identifies the operating system it will be executed. Consequently, OS-specific
tests may execute different lines of code of the application depending on the
OS they are run. While OS-specific tests may make the test suite more flexi-
ble [29], they may change test behavior according to the executed OS. Another
aspect is that developers may not be able to fully execute OS-specific tests on
their local machines because multiple operating systems would be required. In
practice, OS-specific tests need to be executed in CI/CD tools or containers
to get the proper test result. This has side effects on code coverage metrics
because distinct application code may be executed depending on the target
OS. Indeed, in large and complex test suites, this is an unavoidable issue. For
example, the Python testing documentation states that developers may not
be able to get 100% coverage due to platform-specific code [24]: “Do real-
ize, though, that getting 100% coverage is not always possible. There could be
platform-specific code that simply will not execute for you [...]”.1

Figure 1 presents a snippet of an OS-specific test extracted from the
Django web framework. The test test_serialize_pathlib? calls the API
sys.platform® to identify the current OS (line 512) and verifies that path
names properly work in Windows and other OSs. The if block verifies if the
OS is Windows and performs Windows-specific checks and assertions, while

1 https://devguide.python.org/testing/coverage

2 https://github.com/django/django/blob/£3c89744cc801cc7d134bca9958c4aT4aa76380f/
tests/migrations/test_writer.py#L512-1L521

3 https://docs.python.org/3/library/sys.html#sys.platform


https://devguide.python.org/testing/coverage
https://github.com/django/django/blob/f3c89744cc801cc7d134bca9958c4a74aa76380f/tests/migrations/test_writer.py#L512-L521
https://github.com/django/django/blob/f3c89744cc801cc7d134bca9958c4a74aa76380f/tests/migrations/test_writer.py#L512-L521
https://docs.python.org/3/library/sys.html#sys.platform

How and Why Developers Implement OS-Specific Tests 3

the else block runs for other OSs, like Linux and macOS. Notice that the
OS check happens directly in the test code, however, it can also happen in
@skipif test decorators.

512 if sys.platform == “win32":

513 self.assertSerializedEqual(pathlib.WindowsPath.cwd())

514 path = pathlib.WindowsPath("A:\\File.txt")

515 expected = ("pathlib.PurewindowsPath('A:/File.txt')", {"import pathlib"})
516 self.assertSerializedResultEqual{path, expected)

517 else:

518 self.assertSerializedEqual(pathlib.PosixPath.cwd())

519 path = pathlib.PosixPath("/path/file.txt")

520 expected = ("pathlib.PurePosixPath('/path/file.txt')", {"import pathlib"})
521 self.assertSerializedResultEqual(path, expected)

Fig. 1: Snippet of an OS-specific test in the Django project (test_serialize -
pathlib).

We found that OS verification is common in tests: we analyzed the top-100
most popular Python systems on GitHub and detected that over 50% have
OS-specific tests. Despite being largely used in the Python ecosystem, we are
not yet aware of how developers implement these tests or the reasons for their
implementation. This knowledge can be used to understand OS-specific tests
better, discover the challenges faced by developers when testing for multiple
operating systems, and support the development of novel guidelines and tools
to correct OS-specific tests.

In this paper, we provide the first empirical study to assess OS-specific
tests. Our goal is to understand how and why developers implement OS-specific
tests. We explore the usage of APIs to identify the current operating systems
in both test code and test decorators. Our case study on 100 Python systems
enables us to answer the following research questions:

— RQ1: How frequent are OS-specific tests? We aim to better understand
to what extent OS-specific tests occur in real-world software projects and
which operating systems are most targeted. We find that OS-specific tests
are common: 56% of the analyzed Python projects have OS-specific tests,
and Windows is the most targeted OS.

— RQ2: Where are OS-specific tests implemented? We target to assess where
APIs to identify OSs are most frequently located in tests: test code or
test decorators. So far, we are not aware of where developers use this kind
of API or what their preferred solution is. We find that APIs to identify
OSs are used more frequently located in test decorators (65%) than in test
code (35%). The pytest decorator @skipif is the most used to skip tests
depending on the operating system.

— RQ3: What code is targeted in OS-specific tests? We aim to explore what
code is more likely to have OS-specific tests. This may reveal the kind
of code that deserves more attention from developers when implementing
tests for multiple operating systems We find that OS-specific tests target



4 Ricardo Job, Andre Hora

a diversity of code, including file/directory, OS process, network, permis-
sion/privilege, numeric precision, and timezone. The most frequent code
targeted by OS-specific tests are file/directory (36.01%), third-party de-
pendency (25.65%), and OS process (11.14%).

— RQ4: What operations are performed in OS-specific tests? Our goal is to
uncover operations developers perform in OS-specific tests. This may pro-
vide the basis to reason whether these operations are best or bad practices.
Developers perform five operations in OS-specific tests: set OS-specific
value (62.68%), skip test (17.66%), call OS-specific APT (13.39%), mock
OS-specific object (3.42%), and suspend execution (2.85%).

— RQ5: Why are OS-specific tests implemented? We aim to uncover the rea-
sons behind the implementation of OS-specific tests. So far, it is unclear
why developers implement OS-specific tests in the wild. We find that OS-
specific tests are implemented mostly to overcome unavailable external re-
sources (29.58%), unsupported standard libraries (18.08%), and flaky tests
(13.85%). Other reasons include distinct path convention (11.74%), specific
CI/CD environment (10.56%), and unsupported file operation (6.34%).

Finally, based on our findings, we discuss practical implications for practi-
tioners and researchers. First, (1) we discuss the relation of OS-specific tests
with existing test smells like tests with conditional logic [29,32,33] and rotten
green tests [3,16], showing that OS-specific tests may give us false confidence
that the code under test is valid. (2) We elaborate on the fact that OS-specific
tests may be actually executed in CI/CD environments. (3) We discuss the
OS-specific tests in light of technical debt and self-admitted technical debt
(SATD) [34, 36], providing evidence that some OS-specific tests can indicate
sub-optimal implementations that should be fixed later. (4) We elaborate on
the efforts to test on Windows properly and recommend that developers rely
on OS-independent APIs to fix some OS-specific tests related to path conven-
tions. (6) We elaborate on the fact that developers may create OS-specific tests
to skip flaky tests [17,22,27] instead of fixing the non-determinism and recom-
mend that future research on flaky tests should take into account OS-specific
needs. Finally, (6) we propose a novel refactoring to improve some instances
of OS-specific tests.

Contributions: The contributions of this paper are twofold: (1) we provide the
first empirical study to quantitatively and qualitatively explore the usage of
OS-specific tests and (2) we propose actionable implications for research and
practitioners.

Structure: Section 2 presents the study design, while Section 3 details the
results. Section 4 discusses the results and implications. Section 5 presents the
threats to validity and Section 6 details the related work. Finally, Section 7
concludes the paper.



How and Why Developers Implement OS-Specific Tests 5

2 Study Design
2.1 Study Overview

Figure 2 presents an overview of our study design to analyze OS-specific tests,
which includes five major steps. First, we select the software systems to be
analyzed (Section 2.2). Second, we detect the APIs that are able to identify
the operating systems (Section 2.3). Third, we explore how the APIs to identify
the OS can be used by developers (Section 2.4). Finally, we detect systems with
OS-specific tests (Section 2.5) and analyze the detected OS-specific tests both
quantitatively and qualitatively (Section 2.6).

f" l‘f"

pytest .
: unittest
Selection of APIs Usage of APIs
to Identify OSs to Identify OSs
Test code
APIs to \dentlfy OSs Test decorators

100
Selection Software systems Detection of Systems
of Software Systems with OS-specific Tests

56 Systems OS-specific tests
438 Tests files
1,075 Occurrences APIs to identify OSs

RQ1, RQ2: Quantitative

Frequency and Location °
—
RQ3, RQ4, RQ5: Qualitative

Target, Strategies, and Reasons

Analysis of OS-specific Tests

Fig. 2: Overview of the study design.

2.2 Selection of Software Systems

In this research, we aim to assess real-world and relevant software systems. We
select systems written in Python for two reasons. First, Python is among the
most important programming languages nowadays according to both GitHub
and TIOBE rankings. Second, Python has a rich software ecosystem with
widely adopted projects to support web development, machine learning, and
data analysis, to name a few. We select the top-100 most popular Python
software systems hosted on GitHub according to the number of stars, which
is a metric largely adopted in the software mining literature as a proxy of
popularity [8,9].



6 Ricardo Job, Andre Hora

To support our case study, we rely on the GitHub Search tool (GHS) [13].4
We started with the top-220 most popular Python repositories hosted on
GitHub according to the number of stars. Then, we applied the following
exclusion criteria: (1) forked repositories, (2) repositories without tests, and
(3) tutorials, examples, and sample projects, as detailed in Figure 3. Notice
that in this process, we took special care to filter out projects without tests
because those are not relevant to our research. We also filter out non-software
projects, such as tutorials, examples, and code samples.

o 37 77
L |e repositories tutorials, examples,
[EDOS oSS without tests and sample projects

--------- v CEERERY OF
" — "
N——
\-—/

220 214 177 100
repositories repositories repositories software systems

(@

I
@

Fig. 3: Filtering criteria to select the 100 software systems.

The 100 selected software systems are presented in our publicly available
dataset [1]. On the median, these systems have 17,203 stars, 3,710 commits,
and 84 test files. In total, the 100 selected systems have 20,957 test files. Table 1
presents the top-10 most popular selected systems. They include projects that
are broadly adopted worldwide, such as Django, Flask, and scikit-learn.

Table 1: Top-10 most popular selected software systems.

Test With OS-

Pos Project Stars Commits Files Specific Tests
1 ytdl-org/youtube-dl 113,613 18,612 34 1
2 nvbn/thefuck 75,785 1,636 203 1
3 django/django 64,786 30,840 1,888 20
4 pallets/flask 60,620 4,847 48 1
5 keras-team/keras 56,080 7,308 361 2
6 ansible/ansible 53,831 52,820 1,073 5
7 scikit-learn/scikit-learn 50,393 28,503 294 5
8 tiangolo/fastapi 50,004 2,409 510 0
9 psf/requests 49,041 6,139 14 1
10 ageitgey/face_recognition 47,432 238 2 0

4 https://seart-ghs.si.usi.ch


https://seart-ghs.si.usi.ch

How and Why Developers Implement OS-Specific Tests 7

2.3 Selection of APIs to Identify OSs

An OS-specific test is a test that identifies the current operating system it
will be executed. We classify a test as OS-specific when it calls an API to
identify the operating system. For example, the test test_serialize pathlib
presented in Figure 1 has a call to the API sys.platform which returns a
string with the current operating system.

To properly detect OS-specific tests, we need to find APIs that can identify
the operating systems. For this purpose, we manually inspected the Generic
Operating System Services® document, which is provided by the official Python
documentation and summarizes all OS-related interfaces supported by the
Python Standard Library. We find three relevant libraries that can be used to
identify operating systems: sys,% os,” and platform.® These libraries provide
miscellaneous platform and operating system interfaces. Next, we perform a
manual inspection of their documentation to spot APIs that identify the cur-
rent operating systems. For example, the API os.uname? is selected because it
has a clear description of its goal: “Returns information identifying the current
operating system”. After this process, we find 15 APIs to identify the current
0OS, as summarized in Table 2. Notice that ten APIs belong to the platform
library, three to the os, and two to the sys.

Table 2: Selected APIs to identify OSs.

Library API

sys.platform

sys . .
sys.getwindowsversion

os.name
os os.supports_bytes_environ
0S.uname

platform.platform
platform.system
platform.version
platform.uname
platform.win32_edition
platform.win32_ver
platform.win32_is_iot
platform.mac_ver
platform.libc_ver
platform.freedesktop_os_release

platform

5 https://docs.python.org/3/library/allos.html

6 https://docs.python.org/3/library/sys.html

7 https://docs.python.org/3/library/os.html

8 https://docs.python.org/3/library/platform.html

9 https://docs.python.org/3/library/os.html#os.uname


https://docs.python.org/3/library/allos.html
https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/platform.html
https://docs.python.org/3/library/os.html#os.uname

8 Ricardo Job, Andre Hora

2.4 Usage of APIs to Identify OSs

When implementing tests, developers can use APIs to identify the current
operating system in (1) test code or (2) test decorators. Next, we provide an
overview of both solutions.

Test code. Figure 4 presents an example in which an API is used in the
test code. In this case, the test test magic_parse_options relies on the API
os.name (line 168) to adapt the expected result according to the OS. It is
important to note that developers may use APIs to identify the current OS
in test methods and test support methods. Figure 5 presents an example in
which the API os.name is used in the support method setUp (line 1,034).

161 v def test_magic_parse_options():

162 “""Test that we don't mangle paths when parsing magic options."""
163 ip = get_ipython()

164 path = 'ci\\x'

165 m = DummyMagics(ip)

166 opts = m.parse_options('-f %s' % path,'f:')[@]
167 # argv splitting is os-dependent

168 if os.name == 'posix':

169 expected = 'cix'

170 else:

171 expected = path

172 assert opts["f"] == expected

Fig. 4: OS-specific test in the IPython project (test_magic_parse_options).

1830 v def setUp(self):

1031 super().setUp()

1032 po_file = Path(self.PO_FILE)

1833 po_file_tmp = Path(self.PO_FILE + ".tmp")

1034 if os.name == "nt":

1035 # msgmerge outputs Windows style paths on Windows.
1036 po_contents = po_file_tmp.read_text(}.replace(
1037 " dinit__.py",

1038 " A\N\__init__.py",

1039 )

1040 po_file.write_text(po_contents)

1041 else:

1042 po_file_tmp.rename(po_file)

1043 self.original_po_contents = po_file.read_text()

Fig. 5: OS-specific test in the Django project (test_extraction.py).

Test decorators. The other option is to use the APIs to identify the cur-
rent operating system in test decorators. The two major Python frameworks
(unittest [40] and pytest [35]) allow the usage of decorators to skip tests if
certain conditions hold [4]. Figure 6 presents an example in which the API



How and Why Developers Implement OS-Specific Tests 9

sys.platform is used in the pytest decorator @skipif (line 152) to skip the
test if the OS is Windows. Notice that the developer may provide a reason to
skip the test. In this case, the developer explains that the test is “not supported
on Windows yet” (line 152). Note that a test decorator is basically a syntactic
sugar for a conditional. For instance, the example presented in Figure 6 is
equivalent to having the test code within the conditional if sys.platform

I= "win32".

152 @pytest.mark.skipif(sys.platform == "win32", reason="not supported on windows yet")
153 v def test_sanitize_path{():

154 path, is_remote = cp._sanitize_path("r:default-project", "/")
155 assert path == "/default-project"

156 assert is_remote

157

158 path, _ = cp._sanitize_path("r:foo", "/default-project")

159 assert path == "/default-project/foo"

160

161 path, _ = cp._sanitize_path("foo", "/default-project")

162 assert path == "foo"

Fig. 6: OS-specific test in the Lightning project (test_sanitize_path).

To identify all possible decorators that can be used to skip tests condi-
tionally, we perform a manual inspection of both unittest [40] and pytest [35]
documentation. Table 3 presents the identified decorators: three in unittest
(skipIf, skipUnless, and expectedFailure) and two in pytest (skipif and
xfail).

Table 3: Selected test decorators.

Testing Framework Decorator

Qunittest.skipIf
unitttest Qunittest.skipUnless
Qunittest.expectedFailure

Opytest.mark.skipif

pytest Opytest.mark.xfail

2.5 Detection of Systems with OS-specific Tests

We implemented an AST (Abstract Syntax Tree) analysis tool to mine Python
source code and detect OS-specific tests. The tool uses the standard AST li-
brary'® to detect the presence of the selected APIs to identify OSs (see Table 2)
both in test code and test decorators. We ran the proposed tool on the 100

10 https://docs.python.org/3/library/ast.html


https://docs.python.org/3/library/ast.html

10 Ricardo Job, Andre Hora

selected systems and detected 438 test files with OS-specific tests and 1,075
occurrences of APIs to identify OSs (372 in test code and 703 in test deco-
rators). Among the top-10 projects presented in Table 1, we find that eight
projects have OS-specific tests: django (20), scikit-learn (5), ansible (5), keras
(2), flask (1), youtube-dl (1), thefuck (1), and requests (1).

Our results are publicly available [1]. Our tool is publicly available at
https://github.com/ricardojob/0STDetector.

2.6 Analysis of OS-specific Tests
2.6.1 RQ1: How frequent are OS-specific tests?

In this first research question, we assess the frequency of OS-specific tests. We
also explore what are the most adopted APIs to identify OSs and the most
targeted OS. To identify the target OS, we mapped the possible value returned
by the APIs, like win32 for Windows and darwin for macOS. For example,
line 512 in Figure 1 shows that sys.platform returns win32, which is mapped
to Windows.

Rationale: We aim to better understand to what extent OS-specific tests
happen in real-world software projects and what are the most targeted op-
erating systems. So far, it is not clear the extension and frequency of this
phenomenon. If this is common, it may bring to light novel discussions, for
example, whether this is (not) a best practice and how to correct OS-specific
tests properly. Moreover, it may reveal the most problematic operating sys-
tems from the test perspective. If OS-specific tests are concentrated on certain
OSs, this may bring to light opportunities to overcome such limitations.

2.6.2 RQ2: Where are OS-specific tests implemented?

In our second research question, we analyze where the APIs to identify OSs
are located: in test code or test decorators. When it happens in the test code,
we also verify the occurrences in the test method and test support methods.
When it happens in test decorators, we explore what decorators are adopted
(e.g., skipif, xfail, etc.).

Rationale: We aim to assess where APIs to identify OSs are most and
least frequently located in tests: test code or test decorators. So far, we are
not aware of where developers use this kind of API or what their preferred
solution is. Using APIs to identify OSs in test code can make the test more
complex, but able to run on multiple OSs and more flexible [29]. On the other
hand, using APIs to identify OSs in test decorators can make the developers’
intention explicit because they can detail the reason, but it makes the test less
flexible. In addition, tests annotated with these decorators are flagged in the
test result report, contributing to the test documentation.


https://github.com/ricardojob/OSTDetector

How and Why Developers Implement OS-Specific Tests 11

2.6.3 RQ3: What code is targeted in OS-specific tests?

In this RQ, we perform a qualitative analysis to understand what code is
targeted in OS-specific tests. We recall that we found 438 test files with OS-
specific tests with 1,075 occurrences of APIs to identify OSs. Among those
1,075 occurrences, 372 happen in test code, while 703 occur in test decorators.
We manually inspected all 372 occurrences of APIs to identify OSs that hap-
pen in test code. We focused on test code because APIs to identify OSs are
embedded in the source code, thus, we can better analyze the tested context
surrounding the APT usage. For example, in Figure 1, the test code shows an
OS-specific test dealing with path name manipulation. We adopted thematic
analysis [11] to classify the tested context, with the following steps: (1) initial
reading of the test code with OS-specific tests, (2) generating a first code for
each test code, (3) searching for themes among the proposed codes, (4) review-
ing the themes to find opportunities for merging, and (5) defining and naming
the final themes. The first three steps were performed by the first author of the
paper, while steps 4 and 5 were done together by both authors of the paper
until consensus was achieved.

Rationale: We aim to explore what code is more likely to have OS-specific
tests. This may reveal the kind of code that deserves more attention from
developers when implementing tests for multiple operating systems. Moreover,
this information may provide the basis for the proposal of dedicated solutions
to improve the OS-specific tests. For example, if a certain kind of code faces
a large concentration of OS-specific tests, this can indicate the lack of proper
abstractions in that context.

2.6.4 RQ4: What operations are performed in OS-specific tests?

In this RQ, we conduct a qualitative analysis to understand what operations
are performed in OS-specific tests to deal with multiple operating systems.
As in RQ3, we focus on analyzing the test code because they make explicit
the tasks. We also manually inspected all 372 occurrences of APIs to identify
OSs that happen in test code and filtered out 36 cases with unclear codes.
Finally, we manually classified 336 (372 - 36) relevant codes with thematic
analysis [11], following the same steps described in RQ3.

Rationale: We aim to uncover operations developers perform in OS-specific
tests to handle multiple OSs. This may provide the basis to reason whether
these operations are best or bad programming practices that should be pro-
moted or avoided by developers.

2.6.5 RQ5: Why are OS-specific tests implemented?

Lastly, we analyze the reasons for implementing OS-specific tests. Here, we
focus on the analysis of the test decorators because they may contain a message
in which developers can explain the reason for skipping testing on certain
OS. We recall that a test decorator can be seen as a syntactic sugar for a



12 Ricardo Job, Andre Hora

conditional, with the advantage of having the skip reason. That is, a test
with the decorator @skipif (sys.platform == "win32") is equivalent to a
test code with if sys.platform != "win32". Figure 6 presents an example
with the pytest decorator @skipif. We manually inspected all 703 messages in
test decorators and filtered out 277 cases with generic and unclear messages.
Finally, we manually classified 426 (703 - 277) relevant messages with thematic
analysis [11], following the same steps described in RQ3.

Rationale: We aim to uncover the reasons behind the implementation of
OS-specific tests. So far, it is unclear why developers implement OS-specific
tests in the wild. Analyzing the messages provided by test decorators is an
opportunity to assess the reasons as stated by the developers themselves. This
information can reveal the specific issues faced by developers, opening room
for the development of dedicated solutions to overcome such problems.

3 Results

3.1 RQ1: Frequency of OS-specific tests

Table 4 summarizes the frequency of OS-specific tests. We find OS-specific
tests in 56 out of the 100 analyzed Python projects. These 56 projects have
a total of 438 test files with OS-specific tests and 1,075 occurrences of APIs

to identify OSs. On the median, each project has 3.5% of the test files with
OS-specific tests and 6 occurrences of APIs to identify OSs.

Table 4: Summary of OS-specific tests.

Analyzed projects 100
Projects with OS-specific tests 56
Test files with OS-specific tests (total) 438
Test files with OS-specific tests (median, absolute) 4
Test files with OS-specific tests (median, relative) 3.5%
Occurrences of APIs to identify OSs (total) 1,075
Occurrences of APIs to identify OSs (median) 6

Table 5 details the top-10 projects with the highest percentage of test files
with OS-specific tests. Pipenv (virtual environment management tool) is the
project with the highest percentage: 8 out of 49 test files (16.3%) have OS-
specific tests. Next, we have MkDocs (static site generator) with 16% and
Horovod (distributed training framework) with 13.5%. The top-5 projects are
completed with NumPy (package for scientific computing) with 12.8% and
Rich (text formatting library) with 11.9%. It is worth noting that project Ray
(framework for scaling AT and Python applications) has the highest absolute
number of test files with OS-specific tests, 127, which represents 11.3% of test
files. Many projects are libraries, frameworks, and packages. Therefore, they



How and Why Developers Implement OS-Specific Tests 13

are likely to be used by users in multiple operating systems, and consequently,
they should be tested accordingly. Table 5 also presents the domain of the
projects. Indeed, we notice multiple nontrivial domains, including packaging,
machine learning, HTTP client/server, and web framework.

Table 5: Top-10 projects with most OS-specific tests.

Pos Project Domain I;I:zz Vv#lth OS-Specific Tes;:
1 pypa/pipenv packaging 49 8 16.3
2 mkdocs/mkdocs documentation 25 4 16.0
3 horovod /horovod machine learning 59 8 13.5
4 numpy/numpy scientific computing 266 34 12.8
5 textualize/rich text formatting 67 8 11.9
6 ray-project/ray machine learning 1,122 127 11.3
7 aio-libs/aiohttp HTTP client/server 64 7 10.9
8 tornadoweb/tornado web framework 49 5 10.2
9 ipython/ipython interactive computing 119 12 10.1
10 matplotlib/matplotlib  visualization 127 12 9.4

Next, we present the most used APIs to identify the OSs (Table 6). The
1,075 occurrences are mostly concentrated in three APIs: sys.platform (72.5%),
os.name (13.4%), and platform.system (12.9%). Other APIs represent only
1.2% of the cases.

Table 6: Most used APIs to identify OSs.

Pos API # %
1 sys.platform 779 725
2 os.name 144 134
3 platform.system 139 129
4 Others 13 1.2

All 1,075 100

Lastly, we assess what are the most targeted operating systems in the APIs
to identify OSs. Table 7 shows that Windows is by far the most targeted OS:
68.2% of the APIs refer to Windows.'! In contrast, Linux and macOS happen
in only 12.3% of the cases. Other operating systems represent a minority of
the cases (7.2%).

11 Notice that the total in Table 7 is 1,118, which is higher than the 1,075 occurrences of
the APIs to identify OSs. This happens because one single occurrence of an API to identify
OS may target multiple OSs, e.g., sys.platform in [‘linux’, ‘win32°].



14 Ricardo Job, Andre Hora

Table 7: Most targeted OSs.

Pos Target OS # %
1 Windows 762  68.2
2 macOS 138 12.3
2 Linux 138 12.3
3 Others 80 7.2

All 1,118 100

Summary RQ1: OS-specific tests are common in the analyzed Python
projects. We find that 56% of the analyzed systems have test files with
OS-specific tests. sys.platform is the most used API to identify the
operating system in tests, while Windows is the most targeted OS.

3.2 RQ2: Location of OS-specific tests

In this RQ, we explore where OS-specific tests are implemented, that is, in test
code (for example, in if blocks) or test decorators (for example, in @skipif
decorators). Among the 1,075 occurrences of APIs to identify OSs, 372 (35%)
are located in test code and 703 are in test decorators (65%). Table 8 summa-
rizes the APIs to identify OSs by the target OS. Again, Windows is the most
targeted OS both in test code and test decorators.

Table 8: Location of APIs to identify OSs by the target OS.

Pos Target OS Code Decorator

Name # # % # %

1 Windows 762 249 33 513 67

2 macOS 138 55 40 83 60

2 Linux 138 32 23 106 7

3 Others 80 70 87.5 10 12.5
All 1,118 406 712

Among the API occurrences that happen in test code, 40.5% are located
in test methods, while 59.5% are located in test support methods, like setUp,
tearDown, or any other helper methods.

Considering the APT occurrences that happen in test decorators (Table 9),
we find that @pytest.mark.skipif (provided by pytest) is the most used to
skip tests depending on the OS, with 90.61% of the cases. This high usage
of pytest is in line with prior literature that suggests that pytest is currently
the most used Python testing framework [4]. It is followed by the equivalent
decorator in unittest @unittest.skipIf, with 6.83%. Other decorators such
as @xfail and @skipUnless are rarely used with APIs to identify OSs.



How and Why Developers Implement OS-Specific Tests 15

Table 9: Most adopted decorators.

Testing Framework Decorator # %
@pytest.mark.skipif 637 90.61

pytest @pytest.mark.xfail 6 0.85
nittest Qunittest.skipIf 48 6.83
v Qunittest.skipUnless 12 1.71
All 703  100.00

Summary RQ2: APIs to identify operating systems in tests are used
more frequently in test decorators (65%) than in test code (35%). The
pytest decorator @skipif is the most used to skip tests depending on
the operating system.

3.3 RQ3: Target of OS-specific tests

Our manual classification of the test code shows that OS-specific tests target
mainly six categories: file/directory, third-party dependency, OS process, envi-
ronment variable, permission/privilege, and network. As presented in Table 10,
file/directory is the top one (36.01%), followed by third-party dependency
(25.65%), and OS process (11.14%). Table 10 also details the frequency per
operating system. Overall, we notice that Windows (232) is the most frequent,
followed by macOS (82) and Linux (18). Next, we describe each category.

Table 10: Targets of OS-specific tests.

Frequency Operating System

Category # % Windows macOS Linux Others
File/Directory 139 36.01 106 6 6 21
Third-Party Dependency 99 25.65 35 57 3 4
OS Process 43 11.14 33 0 1 9
Environment Variable 22 5.70 14 7 1 0
Permission/Privilege 19 4.92 9 3 0 7
Network 17 4.40 8 2 2 5
Others 47 12.17 27 7 5 8
All 386  100.00 232 82 18 54

File/Directory. This category includes OS-specific tests that handle file and
directory access, like dealing with filesystem paths, I/O operations, and path-
name manipulations. Figure 7 presents an OS-specific test in scikit-learn'?

12 File/Directory in scikit-learn: https://github.com/scikit-learn/scikit-learn/
blob/00032b09c7feea08edd4486c522c2d962f9d52ec/sklearn/utils/tests/test_testing.
py#L585


https://github.com/scikit-learn/scikit-learn/blob/00032b09c7feea08edd4486c522c2d962f9d52ec/sklearn/utils/tests/test_testing.py#L585
https://github.com/scikit-learn/scikit-learn/blob/00032b09c7feea08edd4486c522c2d962f9d52ec/sklearn/utils/tests/test_testing.py#L585
https://github.com/scikit-learn/scikit-learn/blob/00032b09c7feea08edd4486c522c2d962f9d52ec/sklearn/utils/tests/test_testing.py#L585

16 Ricardo Job, Andre Hora

that verifies with the API os.name if the OS is not NT (i.e., not the Windows
family). The test then verifies if a temporary folder does not exist when it is
not run on Windows (see lines 593-594 and 601-602). Figure 8 presents another
OS-specific test in Cookiecutter'® that checks the current OS with the API
sys.platform and writes a file in the .bat (for Windows) or .sh (for other
OSs, like Linux and macOS) format.

585 v def test_tempmemmap(monkeypatch):

586 registration_counter = RegistrationCounter()

587 monkeypatch.setattriatexit, "register", registration_counter)
588

589 input_array = np.ones(3)

590 with TempMemmap(input_array) as data:

591 check_memmap (input_array, data)

592 temp_folder = os.path.dirname(data.filename)

593 if os.name != "nt":

594 assert not os.path.exists(temp_folder)

595 assert registration_counter.nb_calls == 1

596

597 mmap_mode = "r+"

598 with TempMemmap(input_array, mmap_mode=mmap_mode) as data:
599 check_memmap(input_array, data, mmap_mode=mmap_mode)
600 temp_folder = os.path.dirname(data.filename)

601 if os.name != "nt":

602 assert not os.path.exists(temp_folder)

603 assert registration_counter.nb_calls == 2

Fig. 7: OS-specific test of the category file/directory (scikit-learn,
test_tempmemmap).

33 if sys.platform.startswith('win'):

34 post = 'post_gen_project.bat'

35 with Path(hook_dir, post).open('w') as f:
36 f.write("@echo off\n")

37 fowrite("\n")

38 f.write("echo post generation hook\n")
39 f.write("echo. >shell_post.txt\n")

40 else:

41 post = 'post_gen_project.sh’

42 filename = os.path.join(hook_dir, post}

43 with Path(filename).open('w') as f:

44 f.owrite("#!/bin/bash\n")

45 fowrite('\n")

46 f.write("echo 'post generation hook';\n")
47 f.write("touch 'shell_post.txt'\n")

Fig. 8: OS-specific test of the category file/directory (Cookiecutter,
make_test_repo).

13 File/Directory in Cookiecutter: https://github.com/cookiecutter/cookiecutter/
blob/cf81d63bf3d82e1739db73bcbed6f1012890e33e/tests/test_hooks.py#L33


https://github.com/cookiecutter/cookiecutter/blob/cf81d63bf3d82e1739db73bcbed6f1012890e33e/tests/test_hooks.py#L33
https://github.com/cookiecutter/cookiecutter/blob/cf81d63bf3d82e1739db73bcbed6f1012890e33e/tests/test_hooks.py#L33

How and Why Developers Implement OS-Specific Tests 17

Third-Party Dependency. This category contains OS-specific tests that
deal with third-party dependencies, like libraries and other resources that
are required but are not available on the target OS. Figure 9 presents an
OS-specific test in Numpy'* that does not import a Fortran dependency in
Windows. In this case, the developer clearly states in the comment: “we are
not currently able to import the Python-Fortran interface module on Windows

]

64 # we are not currently able to import the Python-Fortran

65 # interface module on Windows / Appveyor, even though we do get
66 # successful compilation on that platform with Python 3.x

67 if sys.platform != "win32":

68 # check for sensible result of Fortran function; that means
69 # we can import the module name in Python and retrieve the
70 # result of the sum operation

71 return_check = import_module(modname)

72 calc_result = return_check.foo()

73 assert calc_result == 15

74 # Removal from sys.modules, is not as such necessary. Even with
75 # removal, the module (dict) stays alive.

76 del sys.modules[modname]

Fig. 9: OS-specific test of the category third-party dependency (Numpy,
test_f2py_init_compile).

OS Process. It refers to OS-specific tests that perform operations related to
creating and managing OS processes. For instance, in the test test_cache_-
return_value_per_process of MLflow, the developer states: “Skip the fol-
lowing block on Windows which doesn’t support os.fork”.*® This test uses the
function os.fork!® provided by the os module, which forks a child process
and is not available on Windows. Indeed, many functions of the os module
have limited availability. For instance, a test support method of MLflow!” uses
the functions os.getpgid and os.killpg, and, like in the previous example,
there is a check for the OS: if os.name != "nt":.

Environment Variable. This category includes OS-specific tests that man-
age environment variables depending on the operating system. For example,
Figure 10 presents a test support method of project Ray, which sets the

14 Third-Party Dependency in Numpy: https://github.com/numpy/numpy/blob/
2ef217d279d13afa2399efee864b9f11£4096aa7/numpy/f2py/tests/test_compile_
function.py#L64-L76

5 08 Process in MLflow: https://github.com/mlflow/mlflow/blob/
7948686166b954e238d55£858c8c9194ec3c006f/tests/utils/test_process_utils.py#
L48-L49
16 nttps://docs.python.org/3/library/os.html#os.fork
1708 Process in MLflow: https://github.com/mlflow/mlflow/blob/
7948686166b954e238d55£858c8c9194ec3c006f/tests/helper_functions.py#L306-L308


https://github.com/numpy/numpy/blob/2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/f2py/tests/test_compile_function.py#L64-L76
https://github.com/numpy/numpy/blob/2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/f2py/tests/test_compile_function.py#L64-L76
https://github.com/numpy/numpy/blob/2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/f2py/tests/test_compile_function.py#L64-L76
https://github.com/mlflow/mlflow/blob/7948686166b954e238d55f858c8c9194ec3c006f/tests/utils/test_process_utils.py#L48-L49
https://github.com/mlflow/mlflow/blob/7948686166b954e238d55f858c8c9194ec3c006f/tests/utils/test_process_utils.py#L48-L49
https://github.com/mlflow/mlflow/blob/7948686166b954e238d55f858c8c9194ec3c006f/tests/utils/test_process_utils.py#L48-L49
https://docs.python.org/3/library/os.html#os.fork
https://github.com/mlflow/mlflow/blob/7948686166b954e238d55f858c8c9194ec3c006f/tests/helper_functions.py#L306-L308
https://github.com/mlflow/mlflow/blob/7948686166b954e238d55f858c8c9194ec3c006f/tests/helper_functions.py#L306-L308

18 Ricardo Job, Andre Hora

environment variable SYSTEMROOT for Windows.'® In the test test_from_-
prefixed_env nested of project Flask there is a check to ensure that Win-
dows environment variables are uppercase: “Windows env var keys are always
uppercase”.'® In project Horovod, the environment variable 0BJC_DISABLE_-
INITIALIZE_FORK_SAFETY is required to initialize the test in the macOS cor-
rectly. In this case, the developer commented: “Spark will fail to initialize

correctly locally on Mac OS without this”.?"

14 ~ def build_env():

15 env = gs.environ.copy()

16 if sys.platform == "win32" and "SYSTEMROOT" not in env:
17 env ["SYSTEMROOT"] = r"C:\Windows"

18

19 return env

Fig. 10: OS-specific test of the category environment wvariable (Ray,
build_env).

Permission/Privilege. It contains OS-specific tests that need to deal with
permissions and privileges, for instance, to execute blocks of code. For exam-
ple, Figure 11 presents the test test_renew_files_propagate_permissions of
project Certbot, which sets distinct permissions depending on the target 0S.%!
Similarly, in project Poetry, the developer explains that a certain call requires
privileges for execution: “os.symlink requires either administrative privileges

or developer mode on Winl10 [...]”.?

Network. It includes OS-specific tests that handle networking and connec-
tions. For example, the test test_connection refused of Salt performs spe-
cial checks for connection refused in Windows. The developer comments: “This
is usually ”Connection refused”. On Windows, strerror is broken and returns
”Unknown error”” .23 In project locust, the test test_web_options sets the

18 Environment Variable in Ray: https://github.com/ray-project/ray/blob/
10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_tls_auth.py#
L14-L19

19 Environment  Variable in  Flask: https://github.com/pallets/flask/blob/
daf6966c89b280725439d2951beb88640c473154/tests/test_config.py#L90-L98

20 Environment Variable in Horovod: https://github.com/horovod/horovod/blob/
£356349204f05ca9256c33dc4d4831798a0b8479/test/integration/test_spark.py#L66-L68
21 Permission/Privilege in  Certbot: https://github.com/certbot/certbot/blob/
5149dfd96e9b57b98551670c203d7b5£986a9¢c32/certbot-ci/certbot_integration_tests/
certbot_tests/test_main.py#L269-1278

22 Permission/Privilege  in  Poetry: https://github.com/python-poetry/poetry/
blob/d5£83fffc9c5813a589f7ef928fe31649171954e/tests/packages/test_locker.py#
L1136-L1139

23 Network in Salt: https://github.com/saltstack/salt/blob/
2bd55266c8ecc929a3a0alaecl1797a368c521072/salt/ext/tornado/test/simple_
httpclient_test.py#L341-1L348


https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_tls_auth.py#L14-L19
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_tls_auth.py#L14-L19
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_tls_auth.py#L14-L19
https://github.com/pallets/flask/blob/daf6966c89b280725439d2951beb88640c473154/tests/test_config.py#L90-L98
https://github.com/pallets/flask/blob/daf6966c89b280725439d2951beb88640c473154/tests/test_config.py#L90-L98
https://github.com/horovod/horovod/blob/f356349204f05ca9256c33dc4d4831798a0b8479/test/integration/test_spark.py#L66-L68
https://github.com/horovod/horovod/blob/f356349204f05ca9256c33dc4d4831798a0b8479/test/integration/test_spark.py#L66-L68
https://github.com/certbot/certbot/blob/5149dfd96e9b57b98551670c203d7b5f986a9c32/certbot-ci/certbot_integration_tests/certbot_tests/test_main.py#L269-L278
https://github.com/certbot/certbot/blob/5149dfd96e9b57b98551670c203d7b5f986a9c32/certbot-ci/certbot_integration_tests/certbot_tests/test_main.py#L269-L278
https://github.com/certbot/certbot/blob/5149dfd96e9b57b98551670c203d7b5f986a9c32/certbot-ci/certbot_integration_tests/certbot_tests/test_main.py#L269-L278
https://github.com/python-poetry/poetry/blob/d5f83fffc9c5813a589f7ef928fe31549171954e/tests/packages/test_locker.py#L1136-L1139
https://github.com/python-poetry/poetry/blob/d5f83fffc9c5813a589f7ef928fe31549171954e/tests/packages/test_locker.py#L1136-L1139
https://github.com/python-poetry/poetry/blob/d5f83fffc9c5813a589f7ef928fe31549171954e/tests/packages/test_locker.py#L1136-L1139
https://github.com/saltstack/salt/blob/2bd55266c8ecc929a3a0a9aec1797a368c521072/salt/ext/tornado/test/simple_httpclient_test.py#L341-L348
https://github.com/saltstack/salt/blob/2bd55266c8ecc929a3a0a9aec1797a368c521072/salt/ext/tornado/test/simple_httpclient_test.py#L341-L348
https://github.com/saltstack/salt/blob/2bd55266c8ecc929a3a0a9aec1797a368c521072/salt/ext/tornado/test/simple_httpclient_test.py#L341-L348

How and Why Developers Implement OS-Specific Tests 19

269 if os.name != 'nt':

279 # 0n Linux, read world permissions + all group permissions
271 # will be copied from the previous private key

272 assert_world_read_permissions(privkey2)

273 assert_equals_world_read_permissions(privkeyl, privkey2)
274 assert_equals_group_permissions(privkeyl, privkey2)

275 else:

276 # 0On Windows, world will never have any permissions, and
277 # group permission is irrelevant for this platform

278 assert_world_no_permissions(privkey2)

Fig. 11: OS-specific test of the category permission/privilege (Certbot, test_-
renew_files propagate _permissions).

interface to 127.0.0.1. In this case, the developer explains: “MacOS only sets
up the loopback interface for 127.0.0.1 and not for 127.% % *7 24

Other. We also find six other categories that occur less frequently in our
dataset: (4) Numeric Precision (14 out of 386) handles numeric precision-
related issues;?® (%) Timeout (11 out of 386) sets timeout /sleep values to wait
for some execution;?® (i7i) Parallelism (8 out of 386) manages parallelism
or multiprocessing;?” (iv) Timezone (6 out of 386) handles local time and
UTC;?® (v) Memory Allocation (6 out of 386) manages memory;?® and (vi)
Location (2 out of 386) provides locale-related treatments.3°

Summary RQ3: OS-specific tests target a diversity of code, includ-
ing file/directory, OS process, network, permission/privilege, numeric
precision, and timezone. The most frequent code targeted by OS-specific
tests are file/directory (36.01%), third-party dependency (25.65%), and
OS process (11.14%).

24 Network in locust: https://github.com/locustio/locust/blob/
5fc187cd7d387d53ccee43c6e187e3d10520c8d5/1ocust/test/test_main.py#L767-L769
25 Numeric Precision in Numpy: https://github.com/numpy/numpy/blob/

2ef217d279d13afa2399efee864b9f11£f4096aa7/numpy/f2py/tests/test_array_from_
pyobj.py#L164

26 Timeout in Mypy: https://github.com/python/mypy/blob/
a9ee618£3a941098b24156eb499db5684fcfc261/mypyc/test/test_run.py#L179

27 Parallelism in scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/
00032b09c7feea08edd4486c522c2d962f9d52ec/sklearn/decomposition/tests/test_
sparse_pca.py#L142

28 Timezone in Ansible: https://github.com/ansible/ansible/blob/
a84b3a4e7277084466e43236fa78fc99592c641a/test/support/integration/plugins/
modules/timezone.py#L107

29 Memory Allocation in Ray: https://github.com/ray-project/ray/blob/
10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_advanced_9.
py#L143

30 Location in Gooey: https://github.com/chriskiehl/gooey/blob/
bedb11b8£27£500e7326711641755ad44576d408/gooey/tests/__init__.py#L48


https://github.com/locustio/locust/blob/5fc187cd7d387d53ccee43c6e187e3d10520c8d5/locust/test/test_main.py#L767-L769
https://github.com/locustio/locust/blob/5fc187cd7d387d53ccee43c6e187e3d10520c8d5/locust/test/test_main.py#L767-L769
https://github.com/numpy/numpy/blob/2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/f2py/tests/test_array_from_pyobj.py#L164
https://github.com/numpy/numpy/blob/2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/f2py/tests/test_array_from_pyobj.py#L164
https://github.com/numpy/numpy/blob/2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/f2py/tests/test_array_from_pyobj.py#L164
https://github.com/python/mypy/blob/a9ee618f3a941098b24156eb499db5684fcfc261/mypyc/test/test_run.py#L179
https://github.com/python/mypy/blob/a9ee618f3a941098b24156eb499db5684fcfc261/mypyc/test/test_run.py#L179
https://github.com/scikit-learn/scikit-learn/blob/00032b09c7feea08edd4486c522c2d962f9d52ec/sklearn/decomposition/tests/test_sparse_pca.py#L142
https://github.com/scikit-learn/scikit-learn/blob/00032b09c7feea08edd4486c522c2d962f9d52ec/sklearn/decomposition/tests/test_sparse_pca.py#L142
https://github.com/scikit-learn/scikit-learn/blob/00032b09c7feea08edd4486c522c2d962f9d52ec/sklearn/decomposition/tests/test_sparse_pca.py#L142
https://github.com/ansible/ansible/blob/a84b3a4e7277084466e43236fa78fc99592c641a/test/support/integration/plugins/modules/timezone.py#L107
https://github.com/ansible/ansible/blob/a84b3a4e7277084466e43236fa78fc99592c641a/test/support/integration/plugins/modules/timezone.py#L107
https://github.com/ansible/ansible/blob/a84b3a4e7277084466e43236fa78fc99592c641a/test/support/integration/plugins/modules/timezone.py#L107
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_advanced_9.py#L143
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_advanced_9.py#L143
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_advanced_9.py#L143
https://github.com/chriskiehl/gooey/blob/be4b11b8f27f500e7326711641755ad44576d408/gooey/tests/__init__.py#L48
https://github.com/chriskiehl/gooey/blob/be4b11b8f27f500e7326711641755ad44576d408/gooey/tests/__init__.py#L48

20 Ricardo Job, Andre Hora

3.4 RQ4: Operations found in OS-specific tests

Our manual classification of the test code shows that developers perform five
operations in OS-specific tests: set OS-specific value, skip test, call OS-specific
API, mock OS-specific object, and suspend execution. As presented in Ta-
ble 11, set OS-specific value is the most frequent (62.68%), followed by skip
test (17.66%), and call OS-specific API (13.39%). Table 11 also presents the
frequency per OS. Overall, we note that Windows (233) is the most frequent,
followed by macOS (38) and Linux (22). Next, we describe each operation.

Table 11: Operations found in OS-specific tests.

Frequency Operating System

Category # % Windows macOS Linux Others
Set OS-Specific Value 220 62.68 145 28 17 30
Skip Test 62 17.66 37 8 3 14
Call OS-Specific API 47 13.39 35 2 1 9
Mock OS-Specific Object 12 3.42 8 0 0 4
Suspend Execution 10 2.85 8 0 1 1
All 351  100.00 233 38 22 58

Set OS-Specific Value. This case occurs when the test checks the operating
system and sets a specific value depending on the OS to ensure the test’s cor-
rect execution. For example, Figure 12 presents an OS-specific test in Django3!
that verifies if the OS is NT (i.e., the Windows family) and sets different val-
ues for the path variable cwd_prefix. Similarly, in project Numpy,3? multiple
command values are set according to the target OS.

70 if os.name == "nt":

71 # #: .\path\to\file.html:123

72 cwd_prefix = "%s%s" % (os.curdir, os.sep)
73 else:

74 # #: path/to/file.html:123

75 cwd_prefix = ""

Fig. 12: OS-specific test with the operation Set OS-Specific Value (Django,
test_extraction).

Skip Test. This case happens when the test verifies the OS and then skips it,
not executing the test in the current OS. We find three main ways to apply this
operation in the test code. Developers skip the test with return and raise

31 Set  OS-Specific Value in Django: https://github.com/django/django/blob/
2eb1£37260f0e0b71ef3a77eb5522d2bb68d6489/tests/i18n/test_extraction.py#L70
32 Set  OS-Specific Value in Numpy: https://github.com/nunpy/numpy/blob/
2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/tests/test_scripts.py#L18


https://github.com/django/django/blob/2eb1f37260f0e0b71ef3a77eb5522d2bb68d6489/tests/i18n/test_extraction.py#L70
https://github.com/django/django/blob/2eb1f37260f0e0b71ef3a77eb5522d2bb68d6489/tests/i18n/test_extraction.py#L70
https://github.com/numpy/numpy/blob/2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/tests/test_scripts.py#L18
https://github.com/numpy/numpy/blob/2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/tests/test_scripts.py#L18

How and Why Developers Implement OS-Specific Tests 21

statements or call skip APIs provided by the testing framework directly in
the test code. Figure 13 presents an example in project Youtube-d13? with
a return statement, while Figure 14 presents an example in Sanic®* with a
raise statement. Figure 15 shows a case of skip in project Numpy.3?

212 v def test_sanitize_path(self):
213 if sys.platform != 'win32':
214 return

215

Fig. 13: OS-specific test with the operation skip test (Youtube-dl, test_utils).

16 v def double_dotted_directory_file(static_file_directory: str):

17 ""“Generate double dotted directory and its files"""
18 if sys.platform == "win32":
19 raise Exception("windows doesn't support double dotted directories")

Fig. 14: OS-specific test with the operation skip test (Sanic, test_static).

13 v def get_module(tmp_path):

14 "' oadd a memory policy that returns a false pointer 64 bytes into the

15 actual allocation, and fill the prefix with some text. Then check at each
16 memory manipulation that the prefix exists, to make sure all alloc/realloc/
17 free/calloc go via the functions here.

18 R

19 if sys.platform.startswith('cygwin'):

20 pytest.skip('link fails on cygwin')

21 if IS_WASM:

22 pytest.skip("Can't build module inside Wasm")

Fig. 15: OS-specific test with the operation skip test (Numpy,
test_mem policy).

Call OS-Specific API. This case happens when the test checks the cur-
rent OS and calls an OS-specific API. Figure 16 presents an example in Mat-
plotlib3% that calls the API win32api.GenerateConsoleCtrlEvent for Win-

33 Skip Test in  Youtube-dl:  https://github.com/ytdl-org/youtube-dl/blob/
213d1d91bfc4a00fefc72fa2730555d51060b42d/test/test_utils.py#L213

34 Skip Test in Sanic: https://github.com/sanic-org/sanic/blob/
af678010628cd76ab7e7ab3e114f25d5c00e931a/tests/test_static.py#L18
35 Skip Test in Numpy: https://github.com/numpy/numpy/blob/

2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/core/tests/test_mem_policy.
py#L19

36 Call OS-Specific API in Matplotlib: https://github.com/matplotlib/matplotlib/
blob/e8101f17d8a7d2d7eccff7452162c02a27980800/1ib/matplotlib/tests/test_
backend_qt.py#L93


https://github.com/ytdl-org/youtube-dl/blob/213d1d91bfc4a00fefc72fa2730555d51060b42d/test/test_utils.py#L213
https://github.com/ytdl-org/youtube-dl/blob/213d1d91bfc4a00fefc72fa2730555d51060b42d/test/test_utils.py#L213
https://github.com/sanic-org/sanic/blob/af678010628cd76a57e7a53e114f25d5c00e931a/tests/test_static.py#L18
https://github.com/sanic-org/sanic/blob/af678010628cd76a57e7a53e114f25d5c00e931a/tests/test_static.py#L18
https://github.com/numpy/numpy/blob/2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/core/tests/test_mem_policy.py#L19
https://github.com/numpy/numpy/blob/2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/core/tests/test_mem_policy.py#L19
https://github.com/numpy/numpy/blob/2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/core/tests/test_mem_policy.py#L19
https://github.com/matplotlib/matplotlib/blob/e8101f17d8a7d2d7eccff7452162c02a27980800/lib/matplotlib/tests/test_backend_qt.py#L93
https://github.com/matplotlib/matplotlib/blob/e8101f17d8a7d2d7eccff7452162c02a27980800/lib/matplotlib/tests/test_backend_qt.py#L93
https://github.com/matplotlib/matplotlib/blob/e8101f17d8a7d2d7eccff7452162c02a27980800/lib/matplotlib/tests/test_backend_qt.py#L93

22 Ricardo Job, Andre Hora

dows and other APIs to Unix-like OSs, such as os.kill, os.getpid, and
signal.SIGINT. This special treatment is required to properly handle the
keyboard interrupt event CTRL+C both in Windows and Unix-like OSs. Fig-
ure 17 presents an example in Django3” that checks the current OS and calls
distinct path APIs for Windows (WindowsPath) and Unix-like (PosixPath).

92 v def interrupter():

93 if sys.platform == 'win32':

94 import win32api

95 win32api.GenerateConsoleCtriEvent(@, @)
96 else:

97 import signal

98 os.kill(os.getpid(), signal.SIGINT)

99

100 target = getattr(plt, target_name)

101 timer = threading.Timer(1, interrupter)

Fig. 16: OS-specific test with the operation call OS-specific API (Matplotlib,
test_backend_qgt).

508 # Concrete path objects work on supported platforms.

509 if sys.platform == "win32":

510 self.assertSerializedEqual(pathlib.WindowsPath.cwd())

511 path = pathlib.WindowsPath("A:\\File.txt")

512 expected = ("pathlib.PureWindowsPath('A:/File.txt')", {"import pathlib"}
513 self.assertSerializedResultEqual(path, expected)

514 else:

515 self.assertSerializedEqual(pathlib.PosixPath.cwd())

516 path = pathlib.PosixPath("/path/file.txt")

517 expected = (“pathlib.PurePosixPath('/path/file.txt')", {"import pathlib"})
518 self.assertSerializedResultEqual(path, expected)

Fig. 17: OS-specific test with the operation call OS-specific API (Django,
test_writer).

Mock OS-Specific Object. This operation occurs when the test verifies
the current OS and performs mock-related operations to emulate missing or
hard to test objects [29, 31,37, 38]. For example, Figure 18 presents an OS-
specific test in IPython3® that mocks the modules os.system in Windows and
subprocess.call in Unix-like OSs. We find occurrences of this operation in

37 Call OS-Specific API in Django: https://github.com/django/django/blob/
2eb1£37260f0e0b71ef3a77eb5522d2bb68d6489/tests/migrations/test_writer.py#
L509-1518

38 Mock OS-Specific Object in IPython: https://github.com/ipython/ipython/
blob/a418£38c4£96de1755701041feb5d8deffbf906db/IPython/core/tests/test_
interactiveshell.py#L667


https://github.com/django/django/blob/2eb1f37260f0e0b71ef3a77eb5522d2bb68d6489/tests/migrations/test_writer.py#L509-L518
https://github.com/django/django/blob/2eb1f37260f0e0b71ef3a77eb5522d2bb68d6489/tests/migrations/test_writer.py#L509-L518
https://github.com/django/django/blob/2eb1f37260f0e0b71ef3a77eb5522d2bb68d6489/tests/migrations/test_writer.py#L509-L518
https://github.com/ipython/ipython/blob/a418f38c4f96de1755701041fe5d8deffbf906db/IPython/core/tests/test_interactiveshell.py#L667
https://github.com/ipython/ipython/blob/a418f38c4f96de1755701041fe5d8deffbf906db/IPython/core/tests/test_interactiveshell.py#L667
https://github.com/ipython/ipython/blob/a418f38c4f96de1755701041fe5d8deffbf906db/IPython/core/tests/test_interactiveshell.py#L667

How and Why Developers Implement OS-Specific Tests 23

multiple large projects such as Pipenv,?® Ray,** and Numpy.*! In the com-
ments, the developers indicate the reason to mock: (1) “Emulate [...] to check
that we handle both cases correctly”, (2) “Win impl relies on kbhit() instead of
select() so the pipe trick won’t work.”, and (3) “Context manager to emulate
os.name != ‘posiz’ .

665 @pytest.mark.parametrize("magic_cmd", [“pip", "conda", "cd"])

666 ~ def test_magic_warnings(magic_cmd):

667 if sys.platform == "win32":

668 to_mock = "os.system"

669 expected_arg, expected_kwargs = magic_cmd, dict()

670 else:

671 to_mock = "subprocess.call"

672 expected_arg, expected_kwargs = magic_cmd, dict(

673 shell=True, executable=os.environ.get("SHELL", MNone)

674 )

675

676 with mock.patch(to_mock, return_value=@) as mock_sub:

677 with pytest.warns{Warning, match=r"You executed the system command"):
678 ip.system_raw(magic_cmd)

679 mock_sub.assert_called_once_with(expected_arg, **expected_kwargs)

Fig. 18: OS-specific test with the operation mock OS-specific object (IPtyhon,
test_interactiveshell).

Suspend Execution. It happens when the test checks the OS and suspends
execution for a given number of seconds, with methods like time.sleep. Fig-
ure 19 presents an example in project Mypy*? in which the API time.sleep
is used to suspend the execution as a workaround for Linux platforms. Notice
that the developer recognizes the issue: “Figure out a better approach, since
this slows down tests”. Similarly, in project Ray, the developer suspends exe-
cution to avoid flaky tests: “Set to 40s on Windows and 20s on other platforms

to avoid flakiness”.*3

39 Mock OS-Specific Object in Pipenv: https://github.com/pypa/pipenv/blob/
babd428d8ee3c5caeb818d746£715c02£338839b/pipenv/patched/pip/_vendor/colorama/
tests/initialise_test.py#L130
40 Mock OS-Specific Object in Ray: https://github.com/ray-project/ray/blob/
10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_usage_stats.py#
L524
41 Mock OS-Specific Object in Numpy: https://github.com/numpy/numpy/blob/
2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/distutils/tests/test_exec_
command . py#L74
42 Suspend Execution in Mypy: https://github.com/python/mypy/blob/
a9ee618f3a941098b24156eb499db5684fcfc261/mypyc/test/test_run.py#L179
43 Suspend Execution in Ray: https://github.com/ray-project/ray/blob/
10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_runtime_env_
working_dir_3.py#L26


https://github.com/pypa/pipenv/blob/babd428d8ee3c5caeb818d746f715c02f338839b/pipenv/patched/pip/_vendor/colorama/tests/initialise_test.py#L130
https://github.com/pypa/pipenv/blob/babd428d8ee3c5caeb818d746f715c02f338839b/pipenv/patched/pip/_vendor/colorama/tests/initialise_test.py#L130
https://github.com/pypa/pipenv/blob/babd428d8ee3c5caeb818d746f715c02f338839b/pipenv/patched/pip/_vendor/colorama/tests/initialise_test.py#L130
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_usage_stats.py#L524
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_usage_stats.py#L524
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_usage_stats.py#L524
https://github.com/numpy/numpy/blob/2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/distutils/tests/test_exec_command.py#L74
https://github.com/numpy/numpy/blob/2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/distutils/tests/test_exec_command.py#L74
https://github.com/numpy/numpy/blob/2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/distutils/tests/test_exec_command.py#L74
https://github.com/python/mypy/blob/a9ee618f3a941098b24156eb499db5684fcfc261/mypyc/test/test_run.py#L179
https://github.com/python/mypy/blob/a9ee618f3a941098b24156eb499db5684fcfc261/mypyc/test/test_run.py#L179
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_runtime_env_working_dir_3.py#L26
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_runtime_env_working_dir_3.py#L26
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_runtime_env_working_dir_3.py#L26

24 Ricardo Job, Andre Hora
170 for operations in steps:

171 # To make sure that any new changes get picked up as being

172 # new by distutils, shift the mtime of all of the

173 # generated artifacts back by a second.

174 fudge_dir_mtimes (WORKDIR, -1)

175 # On Ubuntu, changing the mtime doesn't work reliably. As

176 # a workaround, sleep.

177 #

178 # TODO: Figure out a better approach, since this slows down tests.

179 if sys.platform == "linux":

180 time.sleep(1.0)

Fig. 19: OS-specific test with the strategy suspend ezecution (Mypy,
test_run).

3.5

Summary RQ4: We find that developers perform five operations in
OS-specific tests: set OS-specific value (62.68%), skip test (17.66%),
call OS-specific API (13.39%), mock OS-specific object (3.42%), and
suspend execution (2.85%).

RQ5: Reasons to implement OS-specific tests

In this final RQ, we manually classified the reasons found in test decorators for
implementing OS-specific tests. As presented in Table 12, the most common
reasons are unavailable external resources (29.58%), unsupported standard li-
brary (18.08%), and flaky test (13.85%). Other rationales include distinct path
convention (11.74%), required CI/CD environment (10.56%), and unsupported

file

operation (6.34%). Table 12 details the frequency per operating system.

Overall, we see that Windows (285) is the most frequent, followed by macOS
(71) and Linux (59). Next, we detail each rationale.

Table 12: Reasons to implement OS-specific tests according to developers.

Reasons Frequency Target OS

# % Windows macOS Linux  Others
Unavailable External Resource 126 29.58 62 46 17 1
Unsupported Standard Library 7 18.08 68 0 0 9
Flaky Test 59 13.85 36 1 22 0
Distinct Path Convention 50 11.74 50 0 0 0
Required CI/CD Environment 45 10.56 6 24 15 0
Unsupported File Operation 27 6.34 27 0 0 0
Others 42 9.86 36 0 5 1
All 426 100.00 285 71 59 11

Unavailable External Resource. In this rationale, the developers explain
that certain external resources (like libraries, frameworks, and tools) are re-



How and Why Developers Implement OS-Specific Tests 25

quired to execute the tests, but they are not available on the target OS. For
example, in the projects Ansible and Ray, the developers directly mention the
required dependencies: “macOS requires passlib” ** and “No py-spy on Win-
dows”. ** Passlib is a password hashing library, while py-spy is a sampling
profiler. Also in project Ray, the developer explains that the tested feature is
not supported on the target OS due to the unavailable database: “Feature not
supported Windows because Redis is not officially supported by Windows”. 46
Redis is an in-memory database.

Unsupported Standard Library. In this rationale, the developers indicate
that some APIs provided by the Python Standard Library are not supported
on the target OS. Indeed, several APIs provided by the Python Standard
Library have availability restrictions, mainly in low-level modules, like os,*”
asyncio,*® and socket.?” Among the 77 occurrences of this category, 70 are
related to limitations on Windows. For example, in the project Loguru, the
developer explains: “Windows does not support forking”, ° while in project
Ray, the developer states: “Windows signal handling not compatible”. ®*
Flaky Test. In this rationale, the developers directly state that the test
method is flaky (non-deterministic) on the target OS. It is important to note
that flaky tests are a problem because they damage regression testing and
their failures can be hard to reproduce due to the non-determinism [17,27].
For example, in project Ray, the developer simply states: Flaky on Mac. Issue
#27562. 52

Distinct Path Convention. Different operating systems have distinct path
name conventions. The difference happens mainly between Windows and Unix-
style paths. In this category, all 50 instances are related to Windows. For ex-
ample, in project Sanic, the developer states a path convention that is not sup-

ported in Windows: “Windows does not support double dotted directories”. 53

44 Unavailable External Resource in Ansible: https://github.com/ansible/ansible/
blob/a84b3ade7277084466e43236fa78fc99592c641a/test/units/utils/test_encrypt.py#
L177

45 Unavailable External Resource in Ray: https://github.com/ray-project/ray/
blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_dashboard_
profiler.py#L99

46 Unavailable External Resource in Ray: https://github.com/ray-project/ray/blob/
10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_multi_node_3.py#
L534

47 https://docs.python.org/3/1library/os.html

48 nttps://docs.python.org/3/library/asyncio.html

49 https://docs.python.org/3/library/socket.html

50 Unsupported Standard Library in Loguru: https://github.com/delgan/loguru/blob/
a4a6264d4b7ac4822a49244f72f8ee8995497dba/tests/test_multiprocessing.py#L597

51 Unsupported Standard Library in Ray: https://github.com/ray-project/ray/blob/
10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_cli.py#L480

52 Flaky Test in Ray: https://github.com/ray-project/ray/blob/
10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_runtime_env_
working_dir_4.py#L22

53 Distinct Path Convention in Sanic: https://github.com/sanic-org/sanic/blob/
af678010628cd76a57e7ab3e114£25d5c00e931a/tests/test_static.py#L620


https://github.com/ansible/ansible/blob/a84b3a4e7277084466e43236fa78fc99592c641a/test/units/utils/test_encrypt.py#L177
https://github.com/ansible/ansible/blob/a84b3a4e7277084466e43236fa78fc99592c641a/test/units/utils/test_encrypt.py#L177
https://github.com/ansible/ansible/blob/a84b3a4e7277084466e43236fa78fc99592c641a/test/units/utils/test_encrypt.py#L177
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_dashboard_profiler.py#L99
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_dashboard_profiler.py#L99
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_dashboard_profiler.py#L99
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_multi_node_3.py#L534
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_multi_node_3.py#L534
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_multi_node_3.py#L534
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/socket.html
https://github.com/delgan/loguru/blob/a4a6264d4b7ac4822a49244f72f8ee8995497dba/tests/test_multiprocessing.py#L597
https://github.com/delgan/loguru/blob/a4a6264d4b7ac4822a49244f72f8ee8995497dba/tests/test_multiprocessing.py#L597
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_cli.py#L480
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_cli.py#L480
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_runtime_env_working_dir_4.py#L22
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_runtime_env_working_dir_4.py#L22
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_runtime_env_working_dir_4.py#L22
https://github.com/sanic-org/sanic/blob/af678010628cd76a57e7a53e114f25d5c00e931a/tests/test_static.py#L620
https://github.com/sanic-org/sanic/blob/af678010628cd76a57e7a53e114f25d5c00e931a/tests/test_static.py#L620

26 Ricardo Job, Andre Hora

Other cases are related to limited number of characters: “ Windows supports at
most 260 characters in a path”®* and unsupported special characters: “Win-
dows does not support ‘*’in filename” .5

Required CI/CD Environment. In this rationale, the developers indicate
that a certain CI/CD environment is required to execute the tests. For exam-
ple, in project Ray, the developer explains that the test method must be run
on a Linux CI machine: “Requires PR wheels built in CI, so only run on Linux
CI machines”. 56

Unsupported File Operation. This rationale comprises different unsup-
ported file operations on the target OS, such as deleting, moving, and creating
files and directories. For example, in project Django, the developer states that
open files cannot be moved in Windows: “Windows doesn’t support moving
open files”. °7

Others. Other rationales occur less frequently in our dataset, for example,

explanations related to performance and runtime issues.

Summary RQ5: OS-specific tests are implemented mostly to
overcome unavailable external resources (29.58%), unsupported stan-
dard libraries (18.08%), and flaky tests (13.85%). Other reasons in-
clude distinct path convention (11.74%), required CI/CD environment
(10.56%), and unsupported file operation (6.34%).

4 Discussion and Implications

OS-specific tests and test smells. Overall, we find that OS-specific tests
are common in the analyzed Python projects. For instance, RQ1 presented
that 56% of the analyzed projects have test files with OS-specific tests. The
literature reports that tests with conditional logic is a test that contains code
that may or may not be executed. It is a test smell because branches within
the test method will change the test behavior and make the test harder to
understand and maintain [29,32,33]. Thus, we can see OS-specific tests that
rely on conditional logic as a test smell because they contain branches that will
change test behavior according to the executed OS. The root cause of this smell
is the so-called flexible test, that is, a test that verifies different functionality

54 Distinct Path Convention in Django: https://github.com/django/django/blob/
2eb1£37260f0e0b71ef3a77eb5522d2bb68d6489/tests/file_storage/tests.py#L873

55 Distinct Path Convention in Loguru: https://github.com/delgan/loguru/blob/
a4a6264d4b7ac4822a49244f72f8ee8995497dba/tests/test_filesink_retention.py#L195
56 Required CI/CD Environment in Ray: https://github.com/ray-project/ray/blob/
10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_runtime_env_
conda_and_pip_4.py#L91

57 Unsupported File Operation in Django: https://github.com/django/django/blob/
2eb1£37260f0e0b71ef3a77eb5522d2bb68d6489/tests/file_storage/test_inmemory_
storage.py#L53


https://github.com/django/django/blob/2eb1f37260f0e0b71ef3a77eb5522d2bb68d6489/tests/file_storage/tests.py#L873
https://github.com/django/django/blob/2eb1f37260f0e0b71ef3a77eb5522d2bb68d6489/tests/file_storage/tests.py#L873
https://github.com/delgan/loguru/blob/a4a6264d4b7ac4822a49244f72f8ee8995497dba/tests/test_filesink_retention.py#L195
https://github.com/delgan/loguru/blob/a4a6264d4b7ac4822a49244f72f8ee8995497dba/tests/test_filesink_retention.py#L195
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_runtime_env_conda_and_pip_4.py#L91
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_runtime_env_conda_and_pip_4.py#L91
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_runtime_env_conda_and_pip_4.py#L91
https://github.com/django/django/blob/2eb1f37260f0e0b71ef3a77eb5522d2bb68d6489/tests/file_storage/test_inmemory_storage.py#L53
https://github.com/django/django/blob/2eb1f37260f0e0b71ef3a77eb5522d2bb68d6489/tests/file_storage/test_inmemory_storage.py#L53
https://github.com/django/django/blob/2eb1f37260f0e0b71ef3a77eb5522d2bb68d6489/tests/file_storage/test_inmemory_storage.py#L53

How and Why Developers Implement OS-Specific Tests 27

depending on when or where it is run [29], like distinct operating systems. OS-
specific tests may also lead to rotten green tests, that is, tests that pass because
some or all of its assertions are not actually executed [3,16]. We have manually
analyzed the OS-specific tests and detected 51 instances of rotten green tests,
for example, in projects scikit-learn,’® Numpy,®® and Bokeh.%? Therefore, we
show that OS-specific tests may give us false confidence that the code under
test is valid when, in fact, that code may not have been tested at all [3,16].

OS-specific tests and CI/CD. It is important to notice that OS-specific
tests may be executed in CI/CD environments or containers. For example,
GitHub Actions, the most popular CI/CD environment [15], can execute code
in Ubuntu Linux, Windows, and macOS operating systems. Therefore, CI/CD
environments would allow the developers to run OS-specific tests across dif-
ferent operating systems to cover all logic. We have manually inspected the 56
projects that contain OS-specific tests and verified whether they were using
GitHub Actions (i.e., include the .github/workflows directory). We found
that 48 projects rely on GitHub Actions and have testing configurations.
Among those, 30 projects tested in three OSs (Linux, Windows, and macOS),
13 projects tested in two OSs, and 5 projects tested in only one OS. Therefore,
at least 30 of 54 projects have CI/CD environments properly configured to run
the tests in three operating systems, minimizing the risks of rotten green tests.
Notice, however, that locally the problem persists: developers may not be able
to fully execute OS-specific tests on their local machines because multiple OSs
would be required.

OS-specific tests and technical debt. Technical debt is used to express
sub-optimal source code implementations that are introduced for short-term
benefits and that should be fixed later [34,36]. Among the categories detected
in our qualitative analysis, we found that some are related to sub-optimal
implementations. For example, RQ4 presented that developers may suspend
execution in OS-specific tests, which can slow down the tests. Indeed, RQ5
showed that one reason to implement OS-specific tests is to overcome flaky
tests. Motivated by these findings, we explored whether developers themselves
recognize OS-specific tests as technical debt, the so-called self-admitted tech-
nical debt (SATD) [34,36]. We analyzed the test comments of the OS-specific
tests, looking for terms such as “fixme”, “todo”, and “workaround”. We found
15 occurrences of self-admitted technical debt in OS-specific tests. For ex-
ample, in project Mypy, the developer comments: “T'ODO: Figure out a bet-

58 rotten green tests in scikit-learn: https://github.com/scikit-learn/scikit-learn/

blob/00032b09c7feea08edd4486c522c2d962f9d52ec/sklearn/utils/tests/test_testing.
py#L593

59 rotten green tests in Numpy: https://github.com/numpy/numpy/blob/
2ef217d279d13afa2399%efee864b9f11£4096aa7/numpy/distutils/tests/test_misc_util.
py#L64

60 rotten green tests in Bokeh: https://github.com/bokeh/bokeh/blob/
49bf94929297af7ee8abbd2b3283c380beSel117d/tests/unit/bokeh/util/test_browser.
pPy#LOT


https://github.com/scikit-learn/scikit-learn/blob/00032b09c7feea08edd4486c522c2d962f9d52ec/sklearn/utils/tests/test_testing.py#L593
https://github.com/scikit-learn/scikit-learn/blob/00032b09c7feea08edd4486c522c2d962f9d52ec/sklearn/utils/tests/test_testing.py#L593
https://github.com/scikit-learn/scikit-learn/blob/00032b09c7feea08edd4486c522c2d962f9d52ec/sklearn/utils/tests/test_testing.py#L593
https://github.com/numpy/numpy/blob/2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/distutils/tests/test_misc_util.py#L64
https://github.com/numpy/numpy/blob/2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/distutils/tests/test_misc_util.py#L64
https://github.com/numpy/numpy/blob/2ef217d279d13afa2399efee864b9f11f4096aa7/numpy/distutils/tests/test_misc_util.py#L64
https://github.com/bokeh/bokeh/blob/49bf94929297af7ee8a6bd2b3283c380be5e117d/tests/unit/bokeh/util/test_browser.py#L97
https://github.com/bokeh/bokeh/blob/49bf94929297af7ee8a6bd2b3283c380be5e117d/tests/unit/bokeh/util/test_browser.py#L97
https://github.com/bokeh/bokeh/blob/49bf94929297af7ee8a6bd2b3283c380be5e117d/tests/unit/bokeh/util/test_browser.py#L97

28 Ricardo Job, Andre Hora

ter approach, since this slows down tests”.6' In Pipenv, the developer states:

“TODO: Implement this message for Windows”.%? In Matplotlib the devel-
oper notes: “FIXME: This should be enabled everywhere once Qt5 is fized on
macOS to not resize incorrectly”.%3 Therefore, we provide evidence that some
OS-specific tests can indicate maintenance problems and are sub-optimal im-
plementations that should be fixed later, like any other technical debt.

Efforts to properly test on Windows. In RQ1, we detected that Windows
is the most targeted operating system in OS-specific tests: 68.2% of the APIs
to identify the OS refer to Windows. In RQ2, we found that Windows is the
most targeted OS both in test code and test decorators. Moreover, RQs 3, 4,
and 5 show that Windows is the most targeted operating system. Overall, we
presented dozens of concrete cases of Windows-related problems, for example:

— Numpy: “we are not currently able to import the Python-Fortran interface
module on Windows [...]”.

Sanic: “Windows does not support double dotted directories”.

— Django: “Windows doesn’t support moving open files”.

Salt: “This is usually ”Connection refused”. On Windows, strerror is bro-
ken and returns ”Unknown error””.

— Ray: “Feature not supported Windows because Redis is not officially sup-

ported by Windows”.

Our results shed light on the numerous issues faced by developers when
testing on Windows, showing that testing on this OS seems more challenging
than testing on Unix-like OSs. Therefore, projects that target multiple OSs
should be aware of the caveats to test on Windows properly. As a concrete
issue, we found that OS-specific tests are commonly related to path convention
issues between Windows and Unix: 100% (50 out of 50) of the OS-specific
tests related to distinct path convention happen for Windows (RQ5). Based
on our findings, we recommend that developers rely on OS-independent APIs
to fix some OS-specific tests related to path conventions. For this purpose,
the Python Standard Library provides OS-independent APIs that can handle
subtle OS differences. For example, the os module provides a set of APIs that
support path manipulation, so the developers do not need to hard-code OS
information in the test. The API os.sep® returns the character used by the
OS to separate pathname components, which is “/” for Unix and “\\” for
Windows paths. Similarly, the API os.linesep® provides the string used to
separate lines, such as “\n” for Unix and “\r\n” for Windows. Other kinds of
OS-specific tests may have particular solutions.

61 self-admitted technical debt in Mypy: https://github.com/python/mypy/blob/
a9ee618£3a941098b24156eb499db5684fcfc261/mypyc/test/test_run.py#L179

62 self-admitted technical debt in Pipenv: https://github.com/pypa/pipenv/blob/
babd428d8ee3c5caeb818d746£715c02£338839b/tests/integration/test_run.py#L45

63 self-admitted technical debt in Matplotlib: https://github.com/matplotlib/
matplotlib/blob/e8101f17d8a7d2d7eccff7452162c02a27980800/1ib/matplotlib/tests/
test_backends_interactive.py#L185

64 https://docs.python.org/3/library/os.html#os.sep

65 https://docs.python.org/3/library/os.html#os.linesep


https://github.com/python/mypy/blob/a9ee618f3a941098b24156eb499db5684fcfc261/mypyc/test/test_run.py#L179
https://github.com/python/mypy/blob/a9ee618f3a941098b24156eb499db5684fcfc261/mypyc/test/test_run.py#L179
https://github.com/pypa/pipenv/blob/babd428d8ee3c5caeb818d746f715c02f338839b/tests/integration/test_run.py#L45
https://github.com/pypa/pipenv/blob/babd428d8ee3c5caeb818d746f715c02f338839b/tests/integration/test_run.py#L45
https://github.com/matplotlib/matplotlib/blob/e8101f17d8a7d2d7eccff7452162c02a27980800/lib/matplotlib/tests/test_backends_interactive.py#L185
https://github.com/matplotlib/matplotlib/blob/e8101f17d8a7d2d7eccff7452162c02a27980800/lib/matplotlib/tests/test_backends_interactive.py#L185
https://github.com/matplotlib/matplotlib/blob/e8101f17d8a7d2d7eccff7452162c02a27980800/lib/matplotlib/tests/test_backends_interactive.py#L185
https://docs.python.org/3/library/os.html#os.sep
https://docs.python.org/3/library/os.html#os.linesep

How and Why Developers Implement OS-Specific Tests 29

Skipping flaky tests on certain OSs instead of fixing the non-determi-
nism. Flaky tests are non-deterministic tests that damage regression testing
and their failures can be hard to reproduce [17,22,27]. RQ4 presented that
developers may suspend execution in OS-specific tests for a given number of
seconds to avoid flaky tests. In RQ5, we found that one important reason to
implement OS-specific tests is to overcome flaky tests. That is, developers fully
skip the test execution on an operating system to avoid non-determinism. It
is important to recall this is not a best practice, that is, instead of properly
testing on the target OS or fixing the non-deterministic issue, developers opt
to simply not test on a particular OS. Consequently, this may lead to a false
confidence that the tested feature is valid, but, in fact, it is untested on a
certain OS. Thus, we recommend that future research on flaky tests should
take into account OS-specific needs as a key aspect that may contribute to non-
determinism. For example, researchers can rely on the APIs to identify OSs
(such as the ones presented in Table 2) to identify signs of non-determinism
and look for explanations on test decorators (such as the ones presented in
Table 3) to detect rationales.

Refactoring OS-specific tests. The literature presents that a general so-
lution to fix tests with conditional logic includes refactoring tests into sepa-
rate modules (e.g., one for each operating system), making each test module
fully executable on the target OS [3,16,29]. Considering the specific case of
OS-specific tests, RQ2 presented that test decorators (65%) are used more fre-
quently in OS-specific tests than in test code (35%), while RQ4 showed that
developers may skip the test with commands embedded in the test code, for
example, using return and raise statements. It is important to recall that
tests annotated with @skipif decorators are flagged in the test result report
(contributing to the test documentation) and avoid using OS checks directly in
the test code (making the test less complex). Moreover, using test decorators
can make the developers’ intention explicit because developers can detail the
reason for skipping the test on a certain OS. Thus, another possible refactoring
is transforming OS-specific tests that check the OS in the test code into their
test decorators counterparts, whenever possible. For example, Figure 13 shows
that the test test_sanitize_path® checks the OS and returns, not execut-
ing the test for Unix-like OSs. This test could be safely refactored to use the
@skipif decorator instead, benefiting from the advantages of test decorators.
In this case, the OS verification in the test code could be replaced by the test
decorator @skipif (sys.platform != "win32"). We detected multiple simi-
lar cases, for example, in projects Ray®” and IPython.%® Thus, we envision that

66 Possible refactoring in Youtube-dl: https://github.com/ytdl-org/youtube—-dl/blob/
213d1d91bfc4a00fefc72fa2730555d51060b42d/test/test_utils.py#L213

67 Possible refactoring in Ray: https://github.com/ray-project/ray/blob/
10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_tempfile.py#L78
68 Possible refactoring in IPython: https://github.com/ipython/ipython/
blob/a418£38c4f96de1755701041feb5d8deffbf906db/IPython/core/tests/test_
interactiveshell.py#L571


https://github.com/ytdl-org/youtube-dl/blob/213d1d91bfc4a00fefc72fa2730555d51060b42d/test/test_utils.py#L213
https://github.com/ytdl-org/youtube-dl/blob/213d1d91bfc4a00fefc72fa2730555d51060b42d/test/test_utils.py#L213
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_tempfile.py#L78
https://github.com/ray-project/ray/blob/10861d9f2ef19e845186b8925053a11c6812a161/python/ray/tests/test_tempfile.py#L78
https://github.com/ipython/ipython/blob/a418f38c4f96de1755701041fe5d8deffbf906db/IPython/core/tests/test_interactiveshell.py#L571
https://github.com/ipython/ipython/blob/a418f38c4f96de1755701041fe5d8deffbf906db/IPython/core/tests/test_interactiveshell.py#L571
https://github.com/ipython/ipython/blob/a418f38c4f96de1755701041fe5d8deffbf906db/IPython/core/tests/test_interactiveshell.py#L571

30 Ricardo Job, Andre Hora

future research in the context of refactoring could leverage this information to
detect novel refactoring opportunities and safely transform the test code.

5 Threats to Validity
5.1 Construct Validity

Selection of APIs to identify OSs. We manually inspected the Python Standard
Library documentation to detect API to identify OSs. We ended up selecting
15 APIs from three modules (sys, os, and platform), which provide a set of
interfaces to identify the current OSs and platforms. As this selection is purely
based on reading the official Python documentation, the risks of false positives
(wrong APIs) and false negatives (missing APIs) are reduced.

Selection of the projects. We target the analysis of real-world and popular
projects. For this purpose, we select the top-100 most popular Python software
systems hosted on GitHub according to the number of stars, which is a metric
commonly used in the software mining literature as a proxy of popularity [8,9].
We recall that we excluded three types of repositories: (1) forked repositories,
(2) repositories without tests, and (3) tutorials, examples, and sample projects.
Therefore, we minimize the risks of analyzing less popular projects.

5.2 Conclusion Validity

Number of analyzed projects. We analyzed 100 popular and real-world Python
software systems. These systems are credible and relevant, as they were se-
lected based on the GitHub star metric [8,9]. Despite these observations, we
encourage future research to reproduce our experiments in a larger collection
of projects to have an even more precise overview of the OS-specific tests.

Number analyzed OS-specific tests. In RQ1 and RQ2, we quantitatively ana-
lyzed all instances of OS-specific tests detected in the 100 projects. Similarly,
in RQ3, RQ4, and RQ5, we analyzed all OS-specific tests that happened in
test codes (372 cases) and test decorators (703 cases). That is, for these quan-
titative and qualitative analyses, it was not needed to select a sample since
all instances were analyzed. For a large number of tests, we recommend that
researchers should randomly select statistically significant samples.

5.3 Internal Validity

Manual classification of test code (RQ3 and RQ4). In RQ3 and RQ4, we man-
ually analyzed all 372 occurrences of APIs to identify OSs in test code to
derive the target and operations. We recall that we only analyzed the test
code because those are the cases in which the target APIs are used within the



How and Why Developers Implement OS-Specific Tests 31

source code, thus, we have more context about the API usage. To minimize the
subjectivity of the manual classification, we adopted thematic analysis [12].

Manual classification of messages in test decorators (RQ5). In RQ5, we also
manually classified the messages found in test decorators. We started with 703
messages and took special care to filter out 277 generic and unclear messages
that did not properly explain the reason to skip the test on a certain OS
(e.g., vague messages like “Fail on Windows”). As in RQ3, we also relied on
thematic analysis [12] to reduce the subjectiveness.

5.4 External Validity

OS-specific tests in other programming languages. In this paper, we explored
OS-specific tests in Python. However, OS-specific tests may occur in any
other programming language that provides APIs to identify the operating sys-
tems. For example, in JavaScript, developers can use the APIs navigator.-
userAgent®” and navigator.platform’ to identify the platform on which
the user’s browser is running, while Node.js provides the API process.-
platform.”t In Java, the developers can use the API System.getProperty-
("os.name"), while Go provides the API runtime.G00S.”® Notice that these
APIs are provided by the standard libraries, meaning they are easily acces-
sible to developers. Therefore, the investigated phenomenon may happen not
only in Python but also in other programming languages, such as JavaScript,
Java, and Go, to name a few. Moreover, other languages, such as C/C++ and
Go, may allow OS identification at compile time. For example, C/C++ has
predefined compile macros about the OSs,” while Go has build constraints.”
However, these compile-time solutions are more related to building the appli-
cation for a target OS (i.e., not testing the application), thus, they are not in
the scope of our study.

Generalization of the results. In this study, we analyzed 100 real-world Python
systems. These projects are among the most popular in the Python ecosystem
(e.g., Django, scikit-learn, and Flask, to name a few), thus, they are relevant
and credible systems. Despite these observations, our findings—as usual in em-
pirical software engineering—cannot be directly generalized to other Python
systems, projects implemented in other programming languages, or closed-
source systems. Further studies should be performed on other software ecosys-
tems and programming languages.

69 https://developer.mozilla.org/en-US/docs/Web/API/Navigator/userAgent

7 https://developer.mozilla.org/en-US/docs/Web/API/Navigator/platform

71 https://nodejs.org/api/process.html#process_process_platform

72 https://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html
73 https://pkg.go.dev/runtime#G00S

74 https://github.com/cpredef/predef/blob/master/OperatingSystems.md

75 https://pkg.go.dev/cmd/go#hdr-Build_constraints


https://developer.mozilla.org/en-US/docs/Web/API/Navigator/userAgent
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/platform
https://nodejs.org/api/process.html#process_process_platform
https://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html
https://pkg.go.dev/runtime#GOOS
https://github.com/cpredef/predef/blob/master/OperatingSystems.md
https://pkg.go.dev/cmd/go#hdr-Build_constraints

32 Ricardo Job, Andre Hora

6 Related Work

Software testing is an essential practice in modern software development, which
ensures quality and sustainable software evolution [6,18,19,25]. However, cre-
ating and maintaining a good test suite can be challenging, as it must evolve
to accommodate new tests and prevent regressions in complex systems over
time [43]. Due to this complexity, test suites may experience test smells [5,20]
or flakiness [21,27]. Indeed, one research topic that is directly related to our
study is the area of test smells. Test smells are bad programming practices
and can indicate potential design problems in test code [41]. Previous studies
have analyzed the impact of these practices on maintenance [5,30], as well
as the impact of refactoring test smell on internal quality attributes from a
developer perspective [14]. For example, Bavota et al. [5] presented two empir-
ical studies to analyze the presence of test smells and their impact on software
maintenance. The main results indicate that test smells are widely spread
across the analyzed software systems and have a strong negative impact on
the comprehensibility of test suites and production code. In addition to the
negative impact, Palomba et al. [30] showed that occurrences of bad smells are
often found with different types of design problems, besides being related to
system attributes such as size or number of classes. Likewise, OS-specific tests
can indicate problems related to maintenance, as detailed in our discussion
of test smell and technical debt. Aljedaani et al. [2] conducted a Systematic
Mapping Study about test smell detection tools. In practice, multiple tools are
proposed to detect test smells, such as TestQ [10], tsDetect [33], PyNose [42],
Pytest-Smell [7], and SniffTest [28]. We could not find any test smell related
to the presence of OS-specific tests on the publicly available tools.

Several studies provide catalogs of test smells [41] [32], for example, Con-
ditional Test Logic [32], Rotten Green Tests [3,16], and Ignored Tests [32].
Conditional Test Logic is a test that includes conditional test logic, or one or
more control statements [32]. Rotten Green Tests refer to tests that include
some assertions that may not be executed [3,16]. This happens usually when a
condition branch is bound to assertions, but it is not run. In fact, OS-specific
tests may lead to both Conditional Test Logic and Rotten Green Tests, as dis-
cussed in Section 4. Ignored Tests occurs when the developer suppresses the
test execution. In particular, it is studied in the Java language and happens
when a test method or class contains the @Ignore annotation [32]. In RQ5,
we presented multiple reasons that we found in test decorators like @skipif.
Those skipping decorators are used to skip the tests based on certain condi-
tions (like the running OS), differently from Ignored Tests which fully ignore
and skip the test.

Another research topic related to ours is flaky tests [17,21,27,39]. Test flak-
iness is related to the non-deterministic behavior of software tests. In practice,
these tests may create multiple problems during regression testing and their
failures can be hard to reproduce. Luo et al. [27] conducted the first extensive
empirical study on flaky tests by analyzing 51 Apache open-source projects.
The major contributions of this research include: detecting the most common



How and Why Developers Implement OS-Specific Tests 33

root causes of test flakiness, identifying approaches that could manifest flaky
behavior, classifying them into ten categories, and describing strategies that
developers use to fix flaky tests. These categories were later extended by Eck
et al. [17]. The authors proposed four additional categories, including Platform
Dependency, which happen when random test failures occur only on specific
platforms. Similarly, Hashemi et al. [22] conducted an empirical study of flaky
tests in JavaScript, investigating the causes and common fixing strategies.
Among the causes, the authors documented Operating Systems when a test
fails due to a run in a specific OS or OS version while passing on others. A
common strategy to deal with flaky tests is simply skip, ignore, or disable
them. Developers may also exclude flaky and platform-specific code from cov-
erage reports [23,24]. Our findings in RQ4 and RQ5 contribute to this research
line. We find that developers may suspend execution in OS-specific tests for a
given number of seconds to avoid flaky tests (RQ4). Moreover, we detect that
developers may not test on certain OSs (with @skipif decorators) to avoid
non-determinism (RQ5).

In summary, we find no study specifically focused on exploring OS-specific
tests. However, it is important to notice that OS-specific tests are closely re-
lated to other studied areas in software testing, including test smells and flaky
tests. Therefore, this research contributes to the software testing literature
with a novel category of tests and shows its relation to other important re-
search areas of the software testing landscape.

7 Conclusion

In this paper, we provided an empirical study to investigate how and why de-
velopers implement OS-specific tests in Python. We mined 100 popular Python
systems and assessed their OS-specific tests both quantitatively and qualita-
tively. Our major findings can be summarized as follows:

— RQ1: OS-specific tests are present in 56% of the analyzed Python projects,
and Windows is the most targeted OS.

— RQ2: APIs to identify operating systems in tests happen more frequently
in test decorators (65%) than in test code (35%).

— RQ3: OS-specific tests target mostly file/directory (36.01%), third-party
dependency (25.65%), and OS process (11.14%).

— RQ4: Multiple operations are performed in OS-specific, including set OS-
specific value (62.68%), skip test (17.66%), and call OS-specific API (13.39%).

— RQ5: OS-specific tests are implemented mostly to overcome unavailable
external resources (29.58%), unsupported standard libraries (18.08%), and
flaky tests (13.85%).

Based on our findings, we discussed practical implications for practitioners
and researchers, including the relation of OS-specific tests with test smells,
technical debt, and flaky tests. We also discussed the efforts to test on Windows



34 Ricardo Job, Andre Hora

properly and proposed a novel refactoring to improve some instances of OS-
specific tests.

In future work, we plan to extend this research to other programming
languages. It is important to note that OS-specific tests may occur in any other
programming language that provides APIs to identify the operating systems,
such as JavaScript, Java, and Go. We also plan to analyze version control
data to explore how OS-specific tests are created and possibly removed over
time in repositories. This would provide the basis to understand better how
developers actually fix OS-specific tests, possibly supporting the development
of novel techniques to correct them. Lastly, we plan to study “OS-specific”
issues in the application code in addition to the test code. As a first effort
in this direction, we explored the usage of platform-specific APIs in both test
and application code [26]. The initial results suggest that developers may also
use APIs to identify operating systems in the application code.

Acknowledgment

This research is supported by CAPES, CNPq, and FAPEMIG.

Conflict of Interest

The authors declared that they have no conflict of interest.

Data Availability Statements

Our dataset is publicly available: https://doi.org/10.5281/zenodo.10120045.

References

—_

OS-Specific Tests Dataset (2024). URL https://doi.org/10.5281/zenodo. 10120045

2. Aljedaani, W., Peruma, A., Aljohani, A., Alotaibi, M., Mkaouer, M.W., Ouni, A., New-
man, C.D., Ghallab, A., Ludi, S.: Test Smell Detection Tools: A Systematic Mapping
Study. In: International Conference on Evaluation and Assessment in Software Engi-
neering, pp. 170-180. ACM (2021). DOI 10.1145/3463274.3463335

3. Aranega, V., Delplanque, J., Martinez, M., Black, A.P., Ducasse, S., Etien, A., Fuhrman,
C., Polito, G.: Rotten green tests in Java, Pharo and Python. Empirical Software
Engineering 26(6), 130 (2021). DOI 10.1007/s10664-021-10016-2

4. Barbosa, L., Hora, A.: How and why developers migrate python tests. In: International
Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 538-548
(2022). DOI 10.1109/SANER53432.2022.00071

5. Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., Binkley, D.: An empirical analysis
of the distribution of unit test smells and their impact on software maintenance. In:
International Conference on Software Maintenance (ICSM), pp. 56-65 (2012). DOI
10.1109/ICSM.2012.6405253

6. Beck, K.: Test-driven development: by example. Addison-Wesley Professional (2003)


https://doi.org/10.5281/zenodo.10120045
https://doi.org/10.5281/zenodo.10120045

How and Why Developers Implement OS-Specific Tests 35

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

Bodea, A.: Pytest-Smell: A smell detection tool for python unit tests. In: International
Symposium on Software Testing and Analysis, pp. 793-796. ACM (2022). DOI 10.1145/
3533767.3543290

. Borges, H., Hora, A., Valente, M.T.: Understanding the factors that impact the pop-

ularity of GitHub repositories. In: International Conference on Software Maintenance
and Evolution, pp. 334-344 (2016). DOI 10.1109/ICSME.2016.31

. Borges, H., Valente, M.T.: What’s in a GitHub star? understanding repository starring

practices in a social coding platform. Journal of Systems and Software 146, 112-129
(2018). DOI https://doi.org/10.1016/j.jss.2018.09.016

Breugelmans, M., Van Rompaey, B.: Testq: Exploring structural and maintenance char-
acteristics of unit test suites. In: International Workshop on Advanced Software Devel-
opment Tools and Techniques, p. 11 (2008)

Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software engineer-
ing. In: International Symposium on Empirical Software Engineering and Measurement,
pp. 275-284 (2011). DOI 10.1109/ESEM.2011.36

Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software engineer-
ing. In: International Symposium on Empirical Software Engineering and Measurement,
pp. 275-284 (2011). DOI 10.1109/ESEM.2011.36

Dabic, O., Aghajani, E., Bavota, G.: Sampling projects in github for MSR studies. In:
International Conference on Mining Software Repositories (MSR), pp. 560-564. IEEE
(2021). DOI 10.1109/MSR52588.2021.00074

Damasceno, H., Bezerra, C., Coutinho, E., Machado, I.: Analyzing Test Smells Refac-
toring from a Developers Perspective. In: Brazilian Symposium on Software Quality,
pp. 1-10. ACM (2022). DOI 10.1145/3571473.3571487

Decan, A., Mens, T., Mazrae, P.R., Golzadeh, M.: On the use of github actions in soft-
ware development repositories. In: International Conference on Software Maintenance
and Evolution (ICSME), pp. 235-245 (2022). DOI 10.1109/ICSME55016.2022.00029
Delplanque, J., Ducasse, S., Polito, G., Black, A.P., Etien, A.: Rotten Green Tests. In:
International Conference on Software Engineering (ICSE), pp. 500-511. IEEE (2019).
DOI 10.1109/ICSE.2019.00062

Eck, M., Palomba, F., Castelluccio, M., Bacchelli, A.: Understanding flaky tests: The
developer’s perspective. In: European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 830-840. ACM (2019). DOI 10.1145/
3338906.3338945

Feathers, M.: Working Effectively with Legacy Code. Prentice Hall Professional (2004)
Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley Profes-
sional (2018)

Greiler, M., Zaidman, A., Van Deursen, A., Storey, M.A.: Strategies for avoiding text
fixture smells during software evolution. In: Working Conference on Mining Software
Repositories (MSR), pp. 387-396. IEEE (2013). DOI 10.1109/MSR.2013.6624053
Gruber, M., Lukasczyk, S., Krois, F., Fraser, G.: An Empirical Study of Flaky Tests in
Python. In: IEEE Conference on Software Testing, Verification and Validation (ICST),
pp. 148-158. IEEE (2021). DOI 10.1109/ICST49551.2021.00026

Hashemi, N., Tahir, A., Rasheed, S.: An Empirical Study of Flaky Tests in JavaScript.
In: International Conference on Software Maintenance and Evolution (ICSME), pp.
24-34. IEEE (2022). DOI 10.1109/ICSME55016.2022.00011

Hora, A.: What code is deliberately excluded from test coverage and why? In: Interna-
tional Conference on Mining Software Repositories, pp. 392-402 (2021)

Hora, A.: Excluding code from test coverage: practices, motivations, and impact. Em-
pirical Software Engineering 28(1), 1-33 (2023)

Hora, A.: Test Polarity: Detecting Positive and Negative Tests. In: International Con-
ference on the Foundations of Software Engineering, pp. 537-541 (2024)

Job, R., Hora, A.: Availability and Usage of Platform-Specific APIs: A First Empirical
Study. In: International Conference on Mining Software Repositories, pp. 27-31 (2024)
Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of flaky tests. In:
International Symposium on Foundations of Software Engineering, pp. 643-653. ACM
(2014). DOI 10.1145/2635868.2635920



36

Ricardo Job, Andre Hora

28.

29.
30.

31.

32.

33.

34.

35.
36.
37.

38.

39.

40.
41.

42.

43.

Maier, F., Felderer, M.: Detection of test smells with basic language analysis methods
and its evaluation. In: International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 897-904. IEEE (2023). DOI 10.1109/SANER56733.2023.
00108

Meszaros, G.: xUnit test patterns: Refactoring test code. Pearson Education (2007)
Palomba, F., Di Nucci, D., Panichella, A., Oliveto, R., De Lucia, A.: On the diffusion of
test smells in automatically generated test code: An empirical study. In: International
Workshop on Search-Based Software Testing, pp. 5-14. ACM (2016). DOI 10.1145/
2897010.2897016

Pereira, G., Hora, A.: Assessing mock classes: An empirical study. In: International
Conference on Software Maintenance and Evolution, pp. 453-463 (2020)

Peruma, A., Almalki, K., Newman, C.D., Mkaouer, M.W., Ouni, A., Palomba, F.: On
the distribution of test smells in open source Android applications: an exploratory study.
In: International Conference on Computer Science and Software Engineering, pp. 193—
202. IBM Corp. (2019)

Peruma, A., Almalki, K., Newman, C.D., Mkaouer, M.W., Ouni, A., Palomba, F.: Ts-
Detect: An open source test smells detection tool. In: European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 1650-1654.
ACM (2020). DOI 10.1145/3368089.3417921

Potdar, A., Shihab, E.: An exploratory study on self-admitted technical debt. In: Inter-
national Conference on Software Maintenance and Evolution, pp. 91-100. IEEE (2014)
Pytest: https://docs.pytest.org (November, 2023)

Sierra, G., Shihab, E., Kamei, Y.: A survey of self-admitted technical debt. Journal of
Systems and Software 152, 70-82 (2019)

Spadini, D., Aniche, M., Bruntink, M., Bacchelli, A.: To mock or not to mock? an
empirical study on mocking practices. In: International Conference on Mining Software
Repositories, pp. 402412 (2017)

Spadini, D., Aniche, M., Bruntink, M., Bacchelli, A.: Mock objects for testing java
systems. Empirical Software Engineering 24, 1461-1498 (2019)

Thorve, S., Sreshtha, C., Meng, N.: An Empirical Study of Flaky Tests in Android
Apps. In: International Conference on Software Maintenance and Evolution (ICSME),
pp. 534-538. IEEE (2018). DOI 10.1109/ICSME.2018.00062

Unittest: https://docs.python.org/3/library/unittest.html (November, 2023)

Van Deursen, A., Moonen, L., Van Den Bergh, A., Kok, G.: Refactoring test code. In:
International Conference on Extreme Programming and Flexible Processes in Software
Engineering (XP2001), pp. 92-95 (2001)

Wang, T., Golubev, Y., Smirnov, O., Li, J., Bryksin, T., Ahmed, I.: Pynose: A test smell
detector for python. In: International Conference on Automated Software Engineering
(ASE), pp. 593-605. IEEE (2021). DOI 10.1109/ASE51524.2021.9678615

Winters, T., Wright, H., Manshreck, T.: Software engineering at google: Lessons learned
from programming over time (2020)



	Introduction
	Study Design
	Results
	Discussion and Implications
	Threats to Validity
	Related Work
	Conclusion

