
What Do Contribution Guidelines Say About
Software Testing?

Bruna Falcucci, Felipe Gomide, Andre Hora
Department of Computer Science, UFMG

Belo Horizonte, Brazil
{brunafalcucci, felipe.gomide, andrehora}@dcc.ufmg.br

Abstract—Software testing plays a crucial role in the contribu-
tion process of open-source projects. For example, contributions
introducing new features are expected to include tests, and contri-
butions with tests are more likely to be accepted. Although most
real-world projects require contributors to write tests, the specific
testing practices communicated to contributors remain unclear.
In this paper, we present an empirical study to understand better
how software testing is approached in contribution guidelines. We
analyze the guidelines of 200 Python and JavaScript open-source
software projects. We find that 78% of the projects include some
form of test documentation for contributors. Test documentation
is located in multiple sources, including CONTRIBUTING files
(58%), external documentation (24%), and README files (8%).
Furthermore, test documentation commonly explains how to
run tests (83.5%), but less often provides guidance on how to
write tests (37%). It frequently covers unit tests (71%), but
rarely addresses integration (20.5%) and end-to-end tests (15.5%).
Other key testing aspects are also less frequently discussed: test
coverage (25.5%) and mocking (9.5%). We conclude by discussing
implications and future research.

Index Terms—Software Testing, Contribution Guidelines, Em-
pirical Studies, GitHub

I. INTRODUCTION

Open-source software projects typically provide contribu-
tion guidelines detailing how to submit contributions [1]–[3].
For maintainers, contribution guidelines communicate how de-
velopers should contribute. For contributors, these guidelines
support the verification of well-formed and valuable contribu-
tions. Both project maintainers and contributors benefit from
saving time and avoiding problems caused by inadequately
submitted contributions [1]. This kind of documentation may
also alleviate barriers faced by new contributors [4]. Due to its
importance, GitHub recommends having contribution guide-
lines as a prerequisite for launching open source projects [3]
and provides guides to support their creation [1], [2].

Contribution guidelines may have multiple contents detail-
ing the workflow, acceptance criteria, or how to create forks,
branches, pull requests, and more [2]. Due to its importance to
software development, software testing is also a fundamental
part of the contributing process [2], [5]–[7]. Indeed, 52% of
the contribution guidelines state that contributions have to
include test cases [2]. Contributions introducing new features
are expected to include tests [6], and core maintainers look for
the inclusion of test cases as a signal of the thoroughness of
the contribution [7]. Consequently, contributions that include
test cases are more likely to be accepted [5].

GitHub recommends that contribution guidelines might re-
quire tests to improve the quality: “Tests help contributors
feel confident that they won’t break anything. They also
make it easier for you to review and accept contributions
quickly” [3]. Similarly, popular guides with best practices
recommend that contributions should at least detail how to run
the tests [8]. It is not surprising that open-source projects treat
tests seriously in their contribution guidelines. For example,
the Pandas contribution documentation states “Ensure you
have appropriate tests. These should be the first part of any
PR”,1 while the Flask one notes: “Include tests if your patch
adds or changes code”.2 Other projects go a step further by
providing detailed information about testing in contribution
guidelines. For instance, Cypress provides an overview of the
test types contributors may create, such as unit, integration,
and e2e.3 The CPython project has extensive contribution
documentation on how to run/write the tests and how to
increase test coverage.4

Despite software testing’s critical role in contribution guide-
lines, we are not yet aware of how software testing is ex-
plained to contributors. While most real-world projects require
developers to write tests in contributions [2], it is unclear
whether these projects actually communicate testing practices
to support contributions. Furthermore, in the case projects do
communicate, it is unclear what testing practices are presented
for contributors. For example, maintainers may focus on
various topics, including run/write tests, test types, coverage,
mocking, and other software testing practices. Assessing this
information can provide the basis for unveiling communication
patterns (that should be adopted in contribution guidelines)
and anti-patterns (that should be avoided).

In this paper, we present an empirical study to understand
better how software testing is approached in the contribution
guidelines of open-source software projects. We analyze the
contribution guidelines of 200 popular open-source projects
written in Python and JavaScript. We propose to answer the
following research questions:

∙ RQ1: How frequently is test documentation for con-
tributors? We find that 78% of the projects include

1https://pandas.pydata.org/docs/development/contributing.html
2https://github.com/pallets/flask/blob/main/CONTRIBUTING.rst
3https://github.com/cypress-io/cypress/blob/develop/CONTRIBUTING.md
4https://devguide.python.org/testing/run-write-tests



some form of test documentation for contributors. Test
documentation is mostly located in CONTRIBUTING files
(58%) and external documentation (24%), but also occurs
in README files (8%).

∙ RQ2: What is the content of test documentation for
contributors? Test documentation commonly explains
how to run tests (83.5%), but less often provides guidance
on how to write tests (37%). Moreover, it frequently
covers unit tests (71%), but rarely addresses integration
(20.5%) and end-to-end tests (15.5%). Other key testing
aspects are also less frequently discussed: test coverage
(25.5%), mocking (9.5%), and best practices (9%).

Contributions. The contributions of this paper are twofold.
First, we provide an initial empirical study to assess test
documentation for contributors. Second, we discuss practical
implications for researchers and practitioners.

II. STUDY DESIGN

A. Case Study
We aim to study the contribution guidelines of real-world

and relevant software projects. For a better perspective of the
contribution guidelines landscape, we focus on projects written
in the two most popular programming languages nowadays:
Python and JavaScript. For each programming language, we
relied on the GitHub Search tool (GHS) [9] to collect the top-
100 most popular software projects hosted on GitHub accord-
ing to the number of stars (a metric primarily adopted in the
software mining literature as a proxy of popularity [10], [11]).
In this process, we took special care to filter out non-software
projects, such as tutorials, examples, and code samples. Our
final dataset is composed of 200 software projects (100 in
Python and 100 in JavaScript). On the median, the selected
projects have 35.7K stars.

B. Detection of Contribution Guidelines
GitHub recommends to write contribution guidelines in

CONTRIBUTING files [1], as in jQuery.5 Contribution guide-
lines may also be written directly in README files [12], as in
Webpack.6 More comprehensive guidelines may be located in
external documentation, as in Black7 and CPython.8

In this study, we consider all kinds of contribution guide-
lines as long as they are dedicated to contributors. We
look for contribution guidelines (or links) in README and
CONTRIBUTING files as well as other variations, such as
DEVELOPMENT files. We verify not only the root directory of
the projects but also the source code and test folders. Follow-
ing these steps, we found that most projects have contribution
guidelines (184 out of 200). This is expected, considering the
relevance and popularity of the selected projects.

All selected projects, contribution guidelines, and extracted
information are publicly available in our dataset at https://doi.
org/10.5281/zenodo.14046800.

5https://github.com/jquery/jquery/blob/main/CONTRIBUTING.md
6https://github.com/webpack/webpack/blob/main/test/README.md
7https://black.readthedocs.io/en/latest/contributing
8https://devguide.python.org

C. Detection of Test Documentation for Contributors
Next, we searched the contribution guidelines for any test

documentation. We define test documentation for contributors
as any information related to software testing that is aimed
at contributors and is included in contribution guidelines.
Particularly, we focused on essential testing topics such as how
to run or write tests, best practices, test coverage, mocking, and
test types (i.e., unit, integration, and end-to-end) [3], [8]. If no
test documentation is found for a given project, a second author
conducts a follow-up search to double-check and minimize
the risk of false negatives. Following these steps, we detected
that 156 out of 200 projects include test documentation for
contributors.

D. Research Questions
We propose two RQs to assess the test documentation for

contributors. First, we explore the frequency of test documen-
tation for contributors. The rationale is to better understand
the extent of the phenomenon under study and to determine
whether any differences exist between Python and JavaScript.
Second, we explore the content of test documentation for
contributors. The rationale is to uncover which testing topics
are addressed in contribution guidelines and determine which
are the most common and lacking. Such information may
help discover best practices and guidelines for creating test
documentation for contributors.

III. RESULTS

A. RQ1: Frequency of test documentation for contributors
We find test documentation for contributors in 78% of the

analyzed projects (156 out of 200), as detailed in Table I.
Notice that Python has slightly more systems with test docu-
mentation (82 in 100) than JavaScript (74 in 100).

TABLE I
SUMMARY OF TEST DOCUMENTATION FOR CONTRIBUTORS.

Python JavaScript Total

Analyzed Projects 100 100 200

• With Test Documentation (#) 82 74 156
• With Test Documentation (%) 82% 74% 78%

Table II presents the location of the 156 test documenta-
tion. We see that most test documentation for contributors
is naturally located in the recommended CONTRIBUTING
files (58%). Test documentation is also present in external
documentation (24%) and README files (8%). We also find
test documentation in other files (10%), such as develop-
ers, development, testing, and workflow. Overall, there is no
major difference between Python and JavaScript regarding
the location. The sole discrepancy happens in the location
external documentation: Python has 26 in this location, while
JavaScript has only 12. This may be explained by the fact that
Python has the Read the Docs9 platform to build documenta-
tion (6 out of the 26 Python systems rely on it).

9https://about.readthedocs.com



TABLE II
LOCATION OF TEST DOCUMENTATION FOR CONTRIBUTORS.

Location Python JavaScript Total %

CONTRIBUTING file 41 49 90 58%
External documentation 26 12 38 24%
README file 5 7 12 8%
Other files 10 6 16 10%

All 82 74 156 100%

Finding 1: (i) 78% of the projects include some
form of test documentation for contributors. (ii) Test
documentation is mostly located in CONTRIBUTING
files (58%) and external documentation (24%), but also
occurs in README files (8%).

B. RQ2: Content of test documentation for contributors

Table III summarizes the content of the test documentation
for contributors. It is divided into five categories: (1) how to
run/write tests, (2) test types, (3) test coverage, (4) mocking,
and (5) best practices & tips. The most frequent content is how
to run/write tests (present in 86% of the test documentation),
followed by test types (74%) and test coverage (25.5%). Next,
we briefly describe each category.

TABLE III
CONTENT OF TEST DOCUMENTATION FOR CONTRIBUTORS.

Content Python JavaScript Total %

How to run/write tests 72 62 134 86%
• How to run tests 70 60 130 83.5%
• How to write tests 30 28 58 37%

Test types 65 50 115 74%
• Unit test 64 47 111 71%
• Integration test 20 12 32 20.5%
• e2e test 7 17 24 15.5%

Test coverage 31 9 40 25.5%

Mocking 10 5 15 9.5%

Best practices & tips 8 6 14 9%

How to run/write tests: Most real-world projects require
contributors to test their patches locally and write new tests
if code is added or changed [2], [3], [6]. Therefore, ideally,
test documentation should describe at least how to run and
write tests. Overall, we find that 86% (134 in 156) of the
test documentation includes information about running and/or
writing tests. While 83.5% describe how to run tests, only
37% actually detail how to write tests. The typical how-to-
run test simply includes running commands, as in the test
documentation of Meteor.10 Some test documentations go a
step further, explaining how to write tests as in Next.js11 and

10https://github.com/meteor/meteor/blob/devel/DEVELOPMENT.md#
running-tests-on-meteor-core

11https://github.com/vercel/next.js/blob/canary/contributing/core/testing.
md#writing-tests-for-nextjs

CPython.12 In this case, the recommendations are diverse,
including how to write effective tests, deciding where to place
the tests, choosing the appropriate types of tests to write,
selecting a suitable testing library, and more

Test types: We analyze the three test types of the test
pyramid: unit, integration, and end-to-end (e2e). Overall, 74%
(115 in 156) of the test documentation mentions at least one
test type. The most common is unit test, present in 71% of
the test documentation. For example, the test documentation
of Langchain mentions: “Unit tests: run on every pull request,
so they should be fast and reliable [...] Unit tests cover
modular logic that does not require calls to outside APIs. If
you add new logic, please add a unit test”.13 Integration test is
found in 20.5% of the cases. Project Langchain also mentions:
“Integration tests cover logic that requires making calls to
outside APIs [...] If you add support for a new external API,
please add a new integration test.”. Lastly, we have e2e test,
which is found in 15.5%. For example, the test documentation
of Next.js states: “End-to-end (e2e) tests are run in complete
isolation from the repository”.14

Test coverage: Test coverage measures the percentage of
code that is covered (and uncovered) by tests [13] and is
typically used to gauge the test effectiveness [14]. We find
that 25.5% (40 in 156) of the test documentation mentions test
coverage. For example, CPython has specific documentation
dedicated to test coverage: “Increase test coverage [...] Ideally
we would like to have 100% coverage, but any increase is a
good one”.15 Likewise, scikit-learn also mentions a coverage
threshold: “We expect code coverage of new features to be at
least around 90%”.16 Project Materialize details what to do
with code that is hard to cover: “Try and cover as many cases
as you can, but don’t worry if there are some edge cases. You
can add comments describing some problematic edge cases in
TODOs so we know about them.”.17

Mocking: When creating tests, developers may find de-
pendencies that make the test harder to implement. In this
scenario, they can use mocks (test doubles) to emulate the
dependencies’ behavior, contributing to making the test fast,
isolated, and deterministic [15]–[19]. We detect that only
9.5% of the test documentation refers to test doubles. For
example, project Vuex presents how to abstract API calls:
“When testing actions, we usually need to do some level of
mocking - for example, we can abstract the API calls into
a service and mock that service inside our tests”.18 Project
Pandas details what a unit test should not access: “A unit test
should not access a public data set over the internet due to
flakiness of network connections [...] To mock this interaction,

12https://devguide.python.org/testing/run-write-tests/#writing
13https://python.langchain.com/docs/contributing/testing
14https://github.com/vercel/next.js/blob/canary/contributing/core/testing.md
15https://devguide.python.org/testing/coverage
16https://scikit-learn.org/stable/developers/index.html
17https://github.com/Dogfalo/materialize/blob/v1-dev/CONTRIBUTING.

md
18https://vuex.vuejs.org/guide/testing.html



use the httpserver fixture”.19 Likewise, the OpenHands test
documentation details: “When you launch an integration test,
mock responses are loaded and used to replace a real LLM’s
response, so that we get deterministic and consistent behavior,
and most importantly, without spending real money”.20

Best practices & tips: Lastly, we looked for best practices
and tips in software testing. We find that only 9% (14 in 156) of
the test documentation provides this information. For example,
project Next.js recommends creating bug-reproducing tests:
“Best Practices: When applying a fix, ensure the test fails
without the fix. This makes sure the test will properly catch
regressions”.21 The test documentation of jQuery provides
tips to improve test performance: “Test Suite Tips: During
the process of writing your patch, you will run the test suite
MANY times. You can speed up the process by narrowing the
running test suite down to the module you are testing [...]”.22

Finding 2: (i) Test documentation commonly explains
how to run tests (83.5%), but less often provides
guidance on how to write tests (37%). (ii) Test docu-
mentation frequently covers unit tests (71%), but rarely
addresses integration (20.5%) and end-to-end tests
(15.5%). (iii) Other key testing aspects are also less
frequently discussed: test coverage (25.5%), mocking
(9.5%), and best practices (9%).

IV. DISCUSSION

Current status of test documentation for contributors. We
find that test documentation for contributors has diverse but
unbalanced test content (e.g., more how-to-run than how-to-
write, more unit than e2e tests). Moreover, we detect that
some content, such as e2e tests, test coverage, mocking, and
best practices, is underrepresented in the test documentation.
Without clear guidance, contributors must make their own
decisions on critical aspects, such as when to create e2e tests,
which mocking framework to use, what code to mock, and
what coverage threshold to adopt. We recommend that project
maintainers include this test information to inform contributors
better and prevent issues caused by inadequately submitted
contributions [1]. Also, researchers can propose novel tools to
automatically detect contribution guidelines that lack certain
test-related content (e.g., mocking) to warn maintainers.
Guidelines to create test documentation for contributors.
Our goal in this research is to provide guidelines to help create
better test documentation for contributors. RQ2 provides an
initial step in this direction. For example, for test coverage,
we found many concrete recommendations for contributors
about coverage increments, coverage thresholds, code that is

19https://pandas.pydata.org/docs/dev/development/contributing_codebase.
html

20https://github.com/All-Hands-AI/OpenHands/blob/main/tests/integration/
README.md

21https://github.com/vercel/next.js/blob/canary/contributing/core/testing.
md#best-practices

22https://github.com/jquery/jquery/blob/main/CONTRIBUTING.md#
test-suite-tips

hard to cover, and more. In the mock context, we found
recommendations of how to mock, what to mock, and what
tool to use. Regarding the test types, we found definitions of
what characterizes a specific type of test, when a test should
be created, and when a test should be run. Therefore, we
envision that a deep qualitative exploration of the actual test
documentation for contributors can reveal best practices and
guidelines that can be reused by open-source projects.

V. LIMITATIONS

This study provides an initial assessment of test documen-
tation for contributors. The test documentation was detected
manually, with the support of two authors of the paper. As
detailed in Section II, when no test documentation was found
for a given project, a second author conducted a follow-
up search to double-check and minimize the risk of false
negatives. Moreover, RQ2 explored the content of such docu-
mentation. However, we did not assess what recommendations
are actually provided for contributors. We plan to deeply
explore the recommendations in further studies.

VI. RELATED WORK

Multiple studies focus on better understanding the content
of readme files and contribution guidelines [2], [4], [12], [20],
[21]. Liu et al. assessed the structure of readme files in Java
projects [20]. The authors found that the majority of readme
files do not align with the GitHub guidelines, but repositories
whose readme files follow the GitHub guidelines tend to be
more popular. Wang et al. also studied the correlation between
readme files and project popularity [21]. Prana et al. found
that information about the “What” and “How” of a repository
is common in readme files [12]. Elazhary et al. explored
the content of contribution guidelines and compared their
actual practices with the prescribed contribution guidelines [2].
The authors found that most projects diverge significantly
from the expected process. Other research shows that such
documentation may support new contributors [4]. Despite the
various studies on contribution guidelines, there is a lack of
research addressing software testing in such guidelines. Our
research aims to fill this gap in the literature.

VII. CONCLUSION AND FURTHER STUDIES

We presented an empirical study to understand better how
software testing is approached in contribution guidelines of
200 Python and JavaScript projects. We revealed the following
insights: (1) 78% of the projects include some form of test
documentation for contributors; (2) they focus more on how-
to-run rather than how-to-write; (3) unit tests are commonly
covered, while end-to-end tests receive less attention; and (4)
discussions on test coverage and mocking are rarer.

In future work, we plan to qualitatively explore test doc-
umentation to catalog best practices and guidelines for con-
tributors. In addition to the studied test content, we plan to
address other aspects relevant to testing that may appear in
contributor guidelines, such as testing techniques.



ACKNOWLEDGMENTS

This research is supported by CAPES, CNPq, and
FAPEMIG.

REFERENCES

[1] Setting guidelines for repository contributors, https://docs.github.
com/en/communities/setting-up-your-project-for-healthy-contributions/
setting-guidelines-for-repository-contributors, October, 2024.

[2] O. Elazhary, M.-A. Storey, N. Ernst, and A. Zaidman, “Do as I do,
not as I say: Do contribution guidelines match the GitHub contribution
process?” in International Conference on Software Maintenance and
Evolution (ICSME), 2019, pp. 286–290.

[3] Open Source Guides, https://opensource.guide, October, 2024.
[4] I. Steinmacher, M. A. G. Silva, M. A. Gerosa, and D. F. Redmiles, “A

systematic literature review on the barriers faced by newcomers to open
source software projects,” Information and Software Technology, vol. 59,
pp. 67–85, 2015.

[5] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in International Confer-
ence on Software Engineering, 2014, pp. 356–366.

[6] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and K. Schneider,
“Creating a shared understanding of testing culture on a social coding
site,” in International Conference on Software Engineering (ICSE),
2013, pp. 112–121.

[7] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
GitHub: transparency and collaboration in an open software repository,”
in Conference on Computer Supported Cooperative Work, 2012, pp.
1277–1286.

[8] Make a README, https://www.makeareadme.com, October, 2024.
[9] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in github

for MSR studies,” in International Conference on Mining Software
Repositories, MSR 2021, 2021, pp. 560–564.

[10] H. Borges, A. Hora, and M. T. Valente, “Understanding the factors
that impact the popularity of GitHub repositories,” in International
Conference on Software Maintenance and Evolution, 2016, pp. 334–
344.

[11] H. Borges and M. T. Valente, “What’s in a GitHub star? understanding
repository starring practices in a social coding platform,” Journal of
Systems and Software, vol. 146, pp. 112–129, 2018.

[12] G. A. A. Prana, C. Treude, F. Thung, T. Atapattu, and D. Lo, “Cat-
egorizing the content of GitHub readme files,” Empirical Software
Engineering, vol. 24, pp. 1296–1327, 2019.

[13] A. Hora, “Excluding code from test coverage: practices, motivations, and
impact,” Empirical Software Engineering, vol. 28, no. 1, p. 16, 2023.

[14] Coverage.py, https://coverage.readthedocs.io, October, 2024.
[15] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson

Education, 2007.
[16] G. Pereira and A. Hora, “Assessing mock classes: An empirical study,”

in International Conference on Software Maintenance and Evolution
(ICSME), 2020, pp. 453–463.

[17] D. Spadini, M. Aniche, M. Bruntink, and A. Bacchelli, “To mock or
not to mock? an empirical study on mocking practices,” in International
Conference on Mining Software Repositories (MSR), 2017, pp. 402–412.

[18] ——, “Mock objects for testing java systems: Why and how developers
use them, and how they evolve,” Empirical Software Engineering,
vol. 24, pp. 1461–1498, 2019.

[19] M. Fazzini, C. Choi, J. M. Copia, G. Lee, Y. Kakehi, A. Gorla,
and A. Orso, “Use of test doubles in android testing: An in-depth
investigation,” in International Conference on Software Engineering,
2022, pp. 2266–2278.

[20] Y. Liu, E. Noei, and K. Lyons, “How readme files are structured in open
source java projects,” Information and Software Technology, vol. 148,
p. 106924, 2022.

[21] T. Wang, S. Wang, and T.-H. P. Chen, “Study the correlation between the
readme file of github projects and their popularity,” Journal of Systems
and Software, vol. 205, p. 111806, 2023.


