
On the Implementation of OS-Specific Tests: The CPython Case
Ricardo Job
UNINFO, IFPB

Cajazeiras, Brazil
ricardo.job@ifpb.edu.br

Andre Hora
Department of Computer Science, UFMG

Belo Horizonte, Brazil
andrehora@dcc.ufmg.br

ABSTRACT
Modern software systems are frequently developed and tested
across multiple platforms (e.g., Windows, Linux, and macOS). In
the software testing context, practitioners adapt the tests to run
differently according to the target platform. These tests, which
need to identify the platform on which they will be executed, are
referred to as OS-specific tests. In this paper, we present an empiri-
cal study to evaluate how developers implement OS-specific tests
in CPython, which is the reference implementation project for the
Python programming language. Then, we mine this project and
assess their OS-specific tests quantitatively. For this, we propose
three research questions to assess the frequency, location, and is-
sues related to OS-specific tests. Our results show that OS-specific
tests are common in the CPython project, and 13% of the analyzed
test files are OS-specific tests (RQ1). OS Identification APIs are
used more frequently in test code (53.46%), and the test decorator
@unittest.skipUnless is the most used to skip tests depending
on the platform (RQ2). We also find 170 issues related to OS-specific
tests in CPython, andWindows is the most targeted platform (RQ3).
Lastly, we discussed practical implications for practitioners and
researchers. Based on our findings, we emphasized the importance
of testing across multiple platforms and examined the relationship
between issues and OS-specific tests, among other insights.

KEYWORDS
software testing, mining software repositories, test smells, Python

1 Introduction
Modern software systems are frequently developed and tested
across multiple platforms. Indeed, modern CI/CD tools facilitate
development and testing across Windows, Linux, and macOS [9].
Consequently, practitioners may need to handle platform-specific
code in production or test code. In this context, a platform-specific
code refers to code that adapts its behavior according to the platform
on which it is executed. For instance, Windows and Unix-based sys-
tems have distinct file path conventions, requiring code adaptation
to ensure correct execution across multiple platforms.

In the software testing context, practitioners may adapt the tests
to run differently according to the target platform. These tests,
which need to identify the platform on which they will be executed,
are referred to as OS-specific tests [15]. OS-specific tests may make
the test suite more flexible [22] and can change test behavior accord-
ing to the executed platform. While such tests provide execution
flexibility, they may also be associated with test smells. For instance,
when the execution platform is identified through a conditional
check, certain test branches or assertions may remain unexecuted,
leading to conditional test logic and potentially resulting in rotten
green tests [1, 7, 27, 28].

In practice, the OS-specific tests may execute different lines of
code within the test code depending on the platform on which
they are run. Figure 1 shows an example of an OS-specific test
extracted from the CPython project, which is the canonical im-
plementation of the Python programming language [10]. The test
function test_remote_authority1 uses the API os.name2 to iden-
tify the current platform (line 189). The if block verifies whether
the platform is Windows and performs Windows-specific asser-
tions, while the else block checks for other platforms, such as
macOS and Linux.

Figure 1: OS-specific test in the CPython project
(test_urllib).

Indeed, OS-specific tests are common in CPython: we identified
over 150 test files with OS-specific tests, similar to Figure 1. De-
spite being commonly used, we still do not know how developers
implement these tests in the CPython repository. This knowledge
can be used to understand OS-specific tests better and discover
common issues faced by practitioners when testing across multiple
platforms.

In this paper, we provide an empirical study to evaluate OS-
specific tests in the CPython repository. Specifically, we mine this
project and assess its OS-specific tests quantitatively. We propose
three research questions to support our study:

• RQ1: How frequent are OS-specific tests in the CPython project?
OS-specific tests are common in the CPython project. We
find that 13% of the analyzed test files are OS-specific tests.
sys.platform is the most used OS identification API, while
Windows is the most targeted platform.

• RQ2: Where are OS identification APIs implemented in tests?
OS Identification APIs in tests are used more frequently
in test code (53.46%) than in test decorators (46.54%). The
decorator @unittest.skipUnless is the most used to skip
tests depending on the platform.

• RQ3: What issues are related to OS-specific tests? We find 170
issues related to OS-specific tests in CPython. 22.89% of the

1https://github.com/python/cpython/blob/bbe9c31edc4fc3e1cdc908e9a06593c394f4b
fdb/Lib/test/test_urllib.py#L189
2https://docs.python.org/3.11/library/os.html#os.name

https://orcid.org/0000-0001-8237-3860
https://github.com/python/cpython/blob/bbe9c31edc4fc3e1cdc908e9a06593c394f4bfdb/Lib/test/test_urllib.py#L189
https://github.com/python/cpython/blob/bbe9c31edc4fc3e1cdc908e9a06593c394f4bfdb/Lib/test/test_urllib.py#L189
https://docs.python.org/3.11/library/os.html#os.name


SAST’25, September 22–26, 2025, Recife, PE Job and Hora

OS identification APIs have associated issues, and Windows
is the most targeted platform (47%).

Finally, we discuss practical implications for practitioners and
researchers. Based on our findings, we highlight the importance of
testing on multiple platforms. We discuss the relationship between
issues and related to OS-specific tests. For example, we find 170
issues related to OS-specific tests, and 27.06% of the test decorators
and 19.25% of the test code are directly associated with at least one
issue. We discuss problems in OS-specific test code that may propa-
gate to CPython-dependent projects, leading to cascading failures.
Lastly, we relate some of these issues to potential vulnerabilities,
underlining the security relevance of this testing practice.
Contributions: The contributions of this paper are twofold: (1) we
provide an empirical study to explore the usage of OS-specific tests,
and (2) we propose actionable implications for researchers and
practitioners concerned with cross-platform testing.
Structure: Section 2 reviews background and related work. Section 3
describes the study design, and Section 4 presents the results. Sec-
tion 5 discusses the implications, while Section 6 outlines threats
to validity. Finally, Section 7 concludes the paper.

2 Background and Related Work
2.1 OS Identification APIs
An OS identification API determines the platform (e.g., operating
system) on which the code is running. Developers often rely on
these APIs to address platform-specific requirements [14]. For ex-
ample, operating systems have distinct path name conventions,
particularly between Windows and Unix-style paths, necessitat-
ing platform-aware adaptations in the code. Figure 2 illustrates a
test (test_tempfile) that exemplifies this need. The test function
test_file_mode3 uses the OS Identification API sys.platform4
(line 448) to determine the current platform and ensure that the
permissions are handled correctly across Windows. The if block
contains Windows-specific adaptations, allowing the developer to
apply platform-specific logic within the test function when running
on Windows.

Figure 2: Example usage of OS identification API
sys.platform (test_tempfile).

In Python, the usage of OS identification API is common in test
code, and several APIs support checking the current operating
system [15]. The Python Standard Library provides multiple OS-
related interfaces. Three relevant libraries offer OS identification
3https://github.com/python/cpython/blob/bbe9c31edc4fc3e1cdc908e9a06593c394f4b
fdb/Lib/test/test_tempfile.py#L442-L453
4https://docs.python.org/3.11/library/sys.html#sys.platform

functionalities: sys,5 os,6 and platform.7 These libraries expose
various platform and OS-related functions. For instance, the API
sys.platform8 is explicitly described as: “This string contains a
platform identifier”. Collectively, these libraries expose 15 APIs for
OS identification, as summarized in Table 1. Understanding these
APIs is essential to identifying how they are used in tests across
platforms. Notably, ten APIs belong to the platform library, three
to os, and two to sys.

Table 1: Common OS Identification APIs.

API Short Description

sys.platform Returns a platform identifier.
sys.getwindowsversion Returns the current Windows version.

os.name Name of the OS dependent module imported.
os.supports_bytes
_environ

True if the native OS type of the environment
is bytes.

os.uname Returns information identifying the current OS.

platform.platform Returns a detailed string identifying the under-
lying platform.

platform.system Returns the system/OS name.
platform.version Returns the system’s release version
platform.uname Returns the platform attributes.
platform.win32-
_edition

Get additional version information from the
Windows Registry.

platform.win32_ver Returns a string representing the current Win-
dows edition.

platform.win32_is
_iot

Return True if theWindows edition returned by
win32_edition is recognized as an IoT edition.

platform.mac_ver Get macOS version information and return it
as a tuple

platform.libc_ver Attempts to determine the libc version linked
to the executable.

platform.freedesktop-
_os_release

Extracts OS identification from os-release and
returns it as a dictionary.

2.2 OS-Specific Tests
Section 2.1 introduced the concept of OS identification APIs, which
allow developers to determine the platform on which their code
is running. Consequently, tests must often be adapted to execute
differently depending on whether the OS is Windows or Unix.

In this context, an OS-specific test is a test that identifies the
platform on which it will be executed. That is, a test that calls an
OS identification API. These tests may execute different lines of
application code depending on the OS, making the test suite more
flexible [22]. However, they can also alter test behavior based on
the execution environment. Developers typically use OS identifi-
cation APIs in tests either (1) directly within test code or (2) in
test decorators. While inline platform checks enable conditional
assertions and behavior, decorators offer a cleaner syntax to enable
or disable entire tests based on the detected platform.

5https://docs.python.org/3.11/library/sys.html
6https://docs.python.org/3.11/library/os.html
7https://docs.python.org/3.11/library/platform.html
8https://docs.python.org/3.11/library/sys.html#sys.platform

https://github.com/python/cpython/blob/bbe9c31edc4fc3e1cdc908e9a06593c394f4bfdb/Lib/test/test_tempfile.py#L442-L453
https://github.com/python/cpython/blob/bbe9c31edc4fc3e1cdc908e9a06593c394f4bfdb/Lib/test/test_tempfile.py#L442-L453
https://docs.python.org/3.11/library/sys.html#sys.platform
https://docs.python.org/3.11/library/sys.html
https://docs.python.org/3.11/library/os.html
https://docs.python.org/3.11/library/platform.html
https://docs.python.org/3.11/library/sys.html#sys.platform


On the Implementation of OS-Specific Tests: The CPython Case SAST’25, September 22–26, 2025, Recife, PE

Test code. Figure 3 presents an example where an OS identification
API is used within test code. The test function test_return_code
calls on the API os.name (line 52) to adjust expected result based
on the platform.9 Note that OS identification APIs may appear in
both test methods and test support methods.

Figure 3: Example OS-specific test in test method. The OS
identification API os.name occurs directly in the test code.

Test decorators. Another approach is to use the OS Identifica-
tion test decorators. The two major Python testing frameworks
(unittest [35] and pytest [30]) provide decorators for conditionally
skipping tests based on specific conditions [2]. Figure 4 illustrates
an example in which the OS Identification API sys.platform is
used in the test decorator @unittest.skipUnless (line 868) to skip
the test on not-Windows.10 Developers can also provide a reason
for skipping (or not) the test. In this case, the reason specified is that
the test is “Win32 specific tests” (line 868). The test decorator in Fig-
ure 4 is functionally equivalent to a conditional if sys.platform
== "win32" statement but provides a more concise and declarative
way to skip tests based on platform.

Figure 4: Example OS-specific test in test decorator. The OS
identification API sys.platform occurs in the test decorator.

The unittest [35] and pytest [30] documentation lists available
decorators for conditionally skipping tests. There are five main
decorators: two in pytest (skipif and xfail), and three in unittest
(skipIf, skipUnless, and expectedFailure), as shown in Table 2.

2.3 Related Work
Application Programming Interfaces (APIs) have been extensively
studied for their impact on software reuse, developer productivity,
and system maintainability. Research has addressed topics such as
APImigration, deprecation, misuse, and evolution [13, 14, 19, 21, 24].
Lamothe et al. [18] identified API maintenance and usability as core
themes. However, OS identification APIs have received little at-
tention. Additionally, test smells denote poor design practices in
test code and have been shown to negatively impact maintainabil-
ity and comprehension [3, 26]. Although several detection tools
exist [4, 36], none specifically target OS-specific tests. Cataloged
9https://github.com/python/cpython/blob/bbe9c31edc4fc3e1cdc908e9a06593c394f4b
fdb/Lib/test/test_popen.py#L52
10https://github.com/python/cpython/blob/bbe9c31edc4fc3e1cdc908e9a06593c394f
4bfdb/Lib/test/test_os.py#L868

Table 2: Test decorators in unittest and pytest.

Decorator Short Description

@unittest.skipIf Skip the decorated test if condition is
True.

@unittest.skipUnless Skip the decorated test unless condi-
tion is True.

@unittest.expectedFailure Mark the test as an expected failure or
error.

@pytest.mark.skipif Skip a test function if a condition is
True.

@pytest.mark.xfail Marks a test function as expected to
fail.

smells such as Conditional Test Logic and Rotten Green Tests are
relevant, as OS-specific tests often rely on conditional structures
and may result in not-executed assertions. Lastly, flaky tests exhibit
non-deterministic behavior and are a major concern in regression
testing [8, 20]. Platform dependency has been identified as a root
cause of test flakiness, with OS-specific failures reported in both
JavaScript and Android projects [11, 37]. Commonmitigation strate-
gies include test skipping or exclusion from code coverage [12, 15].
As for the OS-specific tests, Job and Hora [15] presented an em-
pirical analysis of OS-specific tests, investigating how and why
developers implement them. The study finds that such tests are
common, target a diversity of code, and often involve multiple op-
erations. The primary motivations for their implementation are
to address unavailable external resources, unsupported standard
libraries, and flaky tests. However, although the study provides a
qualitative analysis based on a curated set of projects, the study
does not address the broader importance of testing across multiple
platforms, nor the specific relevance of CPython and its potential
cascading effects. Furthermore, it does not explore aspects related
to issues and security vulnerabilities.

3 Study Design
3.1 Selecting Software System
We selected a system implemented in Python due to its prominent
position in current language popularity rankings and its mature
ecosystem. We focus on CPython, the reference implementation of
the Python programming language [10]. The CPython code struc-
ture provides a summary of file locations for modules and built-
ins [34]. Additionally, CPython is a relevant subject for empirical
studies because it serves as the foundation for the entire Python
ecosystem, meaning that changes, defects, or platform-specific be-
haviors can propagate across numerous dependent applications,
libraries, and frameworks. Moreover, its cross-platform support
(e.g.,Windows, macOS, Linux, and BSD) demands explicit design
decisions and testing to address differences in APIs, behavior, and
resource availability. The typical source code layout for a Python
module includes the following files:

• Lib/<module>.py
• Modules/_<module>.c
• Lib/test/test_<module>.py
• Doc/library/<module>.rst

https://github.com/python/cpython/blob/bbe9c31edc4fc3e1cdc908e9a06593c394f4bfdb/Lib/test/test_popen.py#L52
https://github.com/python/cpython/blob/bbe9c31edc4fc3e1cdc908e9a06593c394f4bfdb/Lib/test/test_popen.py#L52
https://github.com/python/cpython/blob/bbe9c31edc4fc3e1cdc908e9a06593c394f4bfdb/Lib/test/test_os.py#L868
https://github.com/python/cpython/blob/bbe9c31edc4fc3e1cdc908e9a06593c394f4bfdb/Lib/test/test_os.py#L868


SAST’25, September 22–26, 2025, Recife, PE Job and Hora

We filter out 919 production files, as they are not relevant to our
research. Furthermore, our study focused only on Python files. To
include test files for standard modules, extension modules, built-
in types, and built-in functions, we prioritized Python files in the
Lib/test/ directory. We analyzed 1,154 test files and found 156
occurrences of OS-specific tests, as described in the section 3.2.
Table 3 summarizes the analyzed files and these OS-specific test
occurrences in the CPython repository.

Table 3: Summary of files in CPython.

All files 2,102
Production files 919
Test files 1,183
Analyzed test files 1,154
Test files with problems 29
Test files with OS-specific tests (total) 156

3.2 Detecting OS-Specific Tests
An OS-specific test is a test that detects the platform on which
it is executed (Section 2.2). A test file is classified as OS-specific
if it calls an OS identification API (Section 2.1). For instance, the
test test_file_mode presented in Figure 2 has a call to the API
sys.platform which returns a string with the current platform.

Thus, to detect OS-specific tests, we spot for occurrences of OS
identification API in both test decorators and test code. To this end,
we performed our automated tool for extracting OS-specific Tests
from Git repositories written in Python [16]. The tool detects the
usage of OS identification API in test files, both test decorators
and test code. We used the OS identification API listed in Table 1.
As an output, the tool exports information about OS-specific tests
(e.g., project name, GitHub link, OS identification API, and target
platform) and stores it in two separate CSV files: one for test deco-
rators and another for test code. Then, we ran the tool on the 1,154
test files and detected 156 OS-specific tests, containing a total of
651 OS identification API occurrences (303 in test decorators and
348 in test code). Our results are publicly available [17].

3.3 Collecting Issues
Lastly, we collected the issues related to OS-specific tests. Issues and
bugs related to OS-specific tests are reported through issue trackers.
Although the current issue tracker is hosted on GitHub, we also
considered the legacy tracker hosted at https://bugs.python.org.

For this purpose, we manually inspected the source code around
the OS-specific test occurrences and mapped the associated issue
numbers to the corresponding issue tracker. In addition to verifying
the existence of the issue number, we analyzed the issue descrip-
tions and related discussions to confirm their relevance. Figure 5
presents two examples of this mapping. First, the issue number
bpo-4013811 was mapped to https://bugs.python.org/issue40138. In
the second example, the issue number gh-12465112 was mapped to
11https://github.com/python/cpython/blob/bbe9c31edc4fc3e1cdc908e9a06593c394f
4bfdb/Lib/test/test_venv.py#L498
12https://github.com/python/cpython/blob/bbe9c31edc4fc3e1cdc908e9a06593c394f
4bfdb/Lib/test/test_os.py#L3549

https://github.com/python/cpython/issues/124651. Overall, we found
170 issues added together across both issue trackers.

(a) Examples of two issues number in source code (bpo-40138 and
gh-124651).

(b) Example of two issues in issue tracker (bugs.python and
github.com).

Figure 5: Example of two issues related to OS-specific tests.
bpo-40138 was mapped to bugs.python.org/issue40138 and gh-
124651 mapped to github.com/python/cpython/issues/124651.

3.4 Research Questions
3.4.1 RQ1: How frequent are OS-specific tests in the CPython project?
In this first research question, we assess the frequency of OS-specific
tests in CPython. We also examine which OS identification APIs
are most frequently used and which platforms are most commonly
targeted. To identify the target platform, we mapped the possible
value returned by the APIs, like win32 for Windows and darwin
for macOS. For example, Figure 5a shows the use of sys.platform
and os.name, which check for win32 and nt, both of which are
mapped to Windows. Table 4 shows some of the possible value
returned by the OS identification APIs and its respective mappings.
Rationale:We aim to better understand to what extent OS-specific
tests happen in CPython project and identify the most targeted
platforms. So far, the extent to which these tests are used remains
unclear.

https://github.com/python/cpython/blob/bbe9c31edc4fc3e1cdc908e9a06593c394f4bfdb/Lib/test/test_venv.py#L498
https://github.com/python/cpython/blob/bbe9c31edc4fc3e1cdc908e9a06593c394f4bfdb/Lib/test/test_venv.py#L498
https://github.com/python/cpython/blob/bbe9c31edc4fc3e1cdc908e9a06593c394f4bfdb/Lib/test/test_os.py#L3549
https://github.com/python/cpython/blob/bbe9c31edc4fc3e1cdc908e9a06593c394f4bfdb/Lib/test/test_os.py#L3549


On the Implementation of OS-Specific Tests: The CPython Case SAST’25, September 22–26, 2025, Recife, PE

Table 4: Target platform and parameter used to mapping.

Platforms Parameters

Windows win32, nt, win
macOS darwin, Darwin
POSIX posix
Linux linux
Android android
VxWorks vxworks
Cygwin cygwin
Solaris sunos, sunos5, SunOS, solaris
WebAssembly wasi, emscripten
AIX aix, AIX

3.4.2 RQ2: Where are OS identification APIs implemented in tests?
In our second research question, we investigate where OS identifi-
cation APIs are implemented: in (1) test code or (2) test decorators.
For both locations, we collect the occurrence of OS identification
API and target platforms. In particular, when it happens in test dec-
orators, we also explore what decorators are adopted (see Table 2).
Rationale: We aim to evaluate where OS identification API are
most frequently located in tests. At this point, we are not aware
of where developers use this kind of API in CPython project. This
analysis may reveal important insights into the implementation of
OS-specific tests.

3.4.3 RQ3: What issues are related to OS-specific tests? In last re-
search question, we assess the frequency of issues associated with
OS-specific tests in CPython. We explore what are the most issues
related to OS-specific test, the OS identification APIs, and the most
targeted platforms. To collect the issues, we mapped the issues num-
ber to respectively issue tracker (Section 3.3). For each occurrence
of OS identification APIs, we can relate multiple issues (Figure 5).
Rationale: Our goal is to understand the extent to which issues are
related to OS-specific tests, and which platforms are most targeted.
So far, it is unclear how common or why this is happening. If
such tests are frequently related to issues, this may prompt further
discussion about whether OS-specific tests are being created as a
response to recurring platform-specific problems.

4 Results
4.1 RQ1: Frequency of OS-specific tests
Table 5 summarizes the frequency of OS-specific tests in CPython.
We find OS-specific tests in 156 out of the 1,154 analyzed test files.
CPython has a total of 651 occurrences of OS Identification APIs.
On mean, 13.51% of test files contain OS-specific tests, with an
average of 4.17 OS identification API occurrences per such test file.

We also investigate the most frequently used OS identification
APIs. Table 6 presents the most used OS identification APIs. The 651
occurrences are mostly concentrated in two APIs: sys.platform
(73.58%) and os.name (23.66%). Other APIs represent only 2.76% of
the occurrences.

Lastly, we assess what are the most targeted platforms in the OS
identification APIs. As presented in Table 7, Windows is the top
one targeted platform (59.19%), followed by macOS (10.10%), and

Table 5: Summary of OS-specific tests in CPython.

Test files Analyzed 1,154
Test files with OS-specific tests (total) 156
Test files with OS-specific tests (mean) 13.51%

Occurrences of OS identification APIs (total) 651
Occurrences of OS identification APIs (decorator) 303
Occurrences of OS identification APIs (code) 348

OS identification APIs in test files (mean) 56.41%
OS identification APIs in OS-specific tests (mean) 4.17

Table 6: Most used OS identification APIs in CPython.

Pos API # %

1 sys.platform 479 73.58
2 os.name 154 23.66
3 sys.getwindowsversion 5 0.77
4 os.supports_bytes_environ 4 0.61
5 platform.mac_ver 3 0.46
6 platform.system 5 0.77
7 platform.uname 1 0.15

All 651 100

POSIX (5.05%). In contrast, Linux, Android and VxWorks happen in
only 11.78% of the cases. We found 22 different platforms, among
which 16 other platforms account for a total of 13.88% of cases.
Table 7 shows a total of 713 of cases, which is higher than the 651
occurrences of the OS identification APIs. This discrepancy arises
because one single occurrence of an OS identification API may
target multiple platforms ( e.g., os.name in [‘posix’, ‘nt’]).

Table 7: Most targeted platforms.

Pos Target platform # %

1 Windows 422 59.19
2 macOS 72 10.10
3 POSIX 36 5.05
4 Linux 31 4.35
5 Android 28 3.93
6 VxWorks 25 3.51
7 Others 99 13.88

All 713 100

Summary RQ1: OS-specific tests are common in CPython,
appearing in 13% of analyzed test files. Windows is the most
targeted platform, while sys.platform is the most used OS
identification API.



SAST’25, September 22–26, 2025, Recife, PE Job and Hora

4.2 RQ2: Location of OS identification API
In this RQ, we explore where OS-specific tests are implemented. As
described in Section 2, OS-specific tests can occur in test code (for ex-
ample, in if blocks) or test decorators (for example, in @skipUnless
decorators). Among the 651 occurrences of OS identification API,
348 (53.46%) are located in test code and 303 in test decorators
(46.54%), as presented in Table 8.

Table 8: Location of OS Identification API.

Pos OS Identification API Decorator Code
API # # % # %

1 sys.platform 479 222 46.35 257 53.65
2 os.name 154 78 50.65 76 49.35
3 sys.getwindows-

version
5 0.00 5 100.00

4 os.supports-
_bytes_environ

4 0.00 4 100.00

5 platform.mac_ver 3 0.00 3 100.00
6 platform.system 5 3 60.00 2 40.00
7 platform.uname 1 0.00 1 100.00

All 651 303 46.54 348 53.46

Table 9 summarizes the OS identification API by the target plat-
form. Windows is the most targeted platform both in test code and
test decorators. It alone accounts for 59.18% of all cases. In turn,
POSIX and VxWorks are the two platforms that happen most in
test decorators, the others happen more frequently in the test code.

Table 9: Location of OS Identification API by the target plat-
form.

Pos Target Platform Decorator Code
Name # # % # %

1 Windows 422 198 46.92 224 53.08
2 macOS 72 26 36.11 46 63.89
3 POSIX 36 24 66.67 12 33.33
4 Linux 31 13 41.94 18 58.06
5 Android 28 11 39.29 17 60.71
6 VxWorks 25 16 64.00 9 36.00
7 Others 99 25 25.25 74 74.75

All 713 303 400

We also explore the frequency of the OS identification API oc-
currences that happen in test decorators. Table 10 presents that
the decorator @unittest.skipUnless (provided by unittest) is the
most used to skip tests depending on the platform, with 51.49%
of the cases. It is followed by @unittest.skipIf, with 48.51%.
Other decorators provided by pytest like @pytest.mark.xfail
and @pytest.mark.skipif are not used with the OS Identification
API. Despite being a widely used framework, the exclusive use of
unittest contrasts with prior studies, which suggests that pytest is
currently the most used Python testing framework [2].

Table 10: Most adopted decorators.

Decorator # %

@unittest.skipUnless 156 51.49
@unittest.skipIf 147 48.51

All 303 100.00

Summary RQ2: OS Identification APIs in tests are used
more frequently in test code (53.46%) than in test decorators
(46.54%). The decorator @unittest.skipUnless is the most
used to skip tests depending on the platform. Decorators
provided by pytest are not used with the OS Identification
API.

4.3 RQ3: Issues and OS-specific tests
Finally, we analyze the frequency of the issues related to OS-specific
tests. Among the 170 issues related to OS-specific tests, we found
that 91 issues are related in decorator, while 79 happen in the test
code. Table 11 shows the most issues related to OS-specific tests,
the target platform, and the location of the OS identification API oc-
currences. The issue bpo-4388413 is highest frequent (4), followed
by bpo-2997214 (4) and gh-12465115 (3). The prefix (bpo or gh)
indicates that issue occurs in bugs.python or Github, respectively.

Table 11: Examples of issues related to OS-specific tests.

Pos Issues Target Platform Decorator Code Total

1 bpo-43884 Windows 0 4 4
2 bpo-29972 aix 4 0 4
3 gh-124651 Windows 3 0 3
4 bpo-36819 Windows 0 3 3
5 gh-82300 Posix 2 0 2
6 Others 82 72 154

All 91 79 170

We also explore what are the most targeted platforms in the is-
sues occurrences. Table 12 presents the top-5 most target platforms.
Again, Windows (47.85%), macOS (10.75%), and POSIX (5.91%) are
the most target platforms, together representing 64.52%.

Finally, we investigate where the issues are located: in test deco-
rator or in test code. Table 13 details the frequency of issues related
to OS-specific tests by OS identification API location. Although
OS identification APIs occur more frequently in test code (348 oc-
currences), issues are more common in test decorators (27.06%).
Overall, issues happen in 22.89% of OS identification API occur-
rences, being more concentrated in test decorators with 27.06%,
while in test code they occur in 19.25% of cases. Note that each
OS occurrence of the OS identification API may be related to more
than one issue, and because of this we have this difference between
distinct issues (170, see Table 11) and issue by OS identification API
location (149, see Table 13).
13https://bugs.python.org/issue43884
14https://bugs.python.org/issue29972
15https://github.com/python/cpython/issues/124651

https://bugs.python.org/issue43884
https://bugs.python.org/issue29972
https://github.com/python/cpython/issues/124651
https://bugs.python.org/issue36819
https://github.com/python/cpython/issues/82300
https://bugs.python.org/issue43884
https://bugs.python.org/issue29972
https://github.com/python/cpython/issues/124651


On the Implementation of OS-Specific Tests: The CPython Case SAST’25, September 22–26, 2025, Recife, PE

Table 12: Frequency of issues related to OS-specific tests by
the target platform.

Pos Target Platform # %

1 Windows 89 47.85
2 macOS 20 10.75
3 POSIX 11 5.91
4 VxWorks 11 5.91
5 AIX 10 5.38
6 Others 45 24.19

All 186 100.00

Table 13: Frequency of issues related to OS-specific tests by
OS Identification API location.

Pos Location Occurrences Issues
Total # %

1 Decorator 303 82 27.06
2 Code 348 67 19.25

All 651 149 22.89

Summary RQ3: Issues are related to OS-specific tests in the
CPython. We find 170 issues related to OS-specific tests in
CPython. 22.89% of the OS identification APIs have associated
issues, and Windows is the most targeted platform (47%).

5 Discussion and Implications
Importance of testing on multiple platforms. Overall, we find
that OS-specific tests are common in the CPython project. For
instance, RQ1 presented that 13.52% of the analyzed test files are
OS-specific tests. The literature reports that this phenomenon is also
common in other Python projects [14, 15]. AlthoughWindows is the
most frequently targeted platform, we found 22 different platforms,
which reinforces the need for practitioners to maintain OS-specific
tests. However, it remains unclear what strategies are used and
how practitioners can best report the OS-specific tests. Likewise,
based on our findings, researchers can direct their research and
investigate why Windows is the most commonly targeted platform
for OS-specific tests, or other mechanisms to identify the platform.
Importance of CPython and possible cascading effects. The
CPython is the reference implementation of the Python program-
ming language and is widely used across of systems. Consequently,
errors in CPython may propagate across many dependent systems
and platforms. As observed in RQ1, tests target 22 different plat-
forms, which suggests a broad ecosystem impact. Table 14 presents
these platforms found. Prior studies on Java ecosystems (e.g.,Maven
Central) have explored similar propagation effects [5, 32, 33]. These
studies emphasize that modern software development increasingly
relies on reusable libraries and components, managing dependen-
cies has become critical for ensuring software stability and secu-
rity [5]. However, challenges like complexity of interdependent
libraries can significantly impact project maintenance [5], and that

even smaller, less connected libraries can trigger significant cas-
cading effects through complex dependency chains, demonstrat-
ing ecosystem vulnerability extends beyond just critical compo-
nents [33]. Moreover, artifacts with more frequent releases tend
to exhibit fewer known vulnerabilities [31]. Our findings suggest
that OS-specific testing practices in CPython could also play a role
in such propagation patterns, given the importance of this project.
Future research directions include studies that can explore how
CPython-dependent software may be critically affected by effects
and how OS-specific testing may be associated with these effects.

Table 14: Target platforms found in CPython test files.

Linux,Windows, macOS, POSIX, AIX, Android
WebAssembly, Solaris, VxWorks, Cygwin , OpenBSD
FreeBSD, GNU/kFreeBSD , DragonFlyBSD, NetBSD
HP-UX, OpenVMS, OSF/1, UnixWare, ios, tvos, watchos

Issues associated with OS-specific tests. In RQ3, we detected
that issues are related to OS-specific tests in the CPython project.
In particular, we found 170 issues, of which 91 are related to the test
decorator, while 79 occur in the test code. Moreover, 27.06% of the
test decorators and 19.25% of the test code are directly associated
with at least one issue. It is important to notice that although we
have detected a considerable number of issues, only three are open:
gh-110012,16 gh-77631,17 and bpo-46390.18 However, the direc-
tion of this relationship remains unclear. It is not evident whether
issues trigger the creation of OS-specific tests or whether these tests
themselves introduce or reveal issues. Whether the issues motivate
the creation of OS-specific tests, or vice versa. We encourage future
work to explore this causal relationship across other projects.
Issues and security vulnerabilities.Modern software develop-
ment landscape heavily relies on transitive dependencies, which
simplify integration but introduce hidden risks [23, 29, 31]. The CVE
program is designed to assign unique identifiers to known vulnera-
bilities and associate them with specific software versions [6]. A
single vulnerable library in the dependency graph can compromise
an entire project through CVEs. Prior work shows that increasing
dependency depth prolongs vulnerability resolution time, while
frequent updates reduce exposure [29, 31]. As discussed in RQ3,
several issues in CPython tests are related to OS-specific tests. In
particular, one case deserves to be highlighted, as the issue (gh-
12465119) is associated with a Common Vulnerabilities and Expo-
sures (CVE). Such vulnerabilities, when exploited, can compromise
confidentiality, integrity, or availability [25]. We identified this re-
lationship, inspecting the issue title and look for term CVE. In the
issue gh-124651, the title is [CVE-2024-9287] venv activation scripts
do not quote strings properly. 20 Thus, we manually look at how

16https://github.com/python/cpython/issues/110012
17https://github.com/python/cpython/issues/77631
18https://bugs.python.org/issue46390
19https://github.com/python/cpython/issues/124651
20The CVE-2024-9287 is described like a vulnerability has been found in the CPython
‘venv’module and CLIwhere path names providedwhen creating a virtual environment
were not quoted properly, allowing the creator to inject commands into virtual environ-
ment “activation" scripts. Availability at https://nvd.nist.gov/vuln/detail/cve-2024-9287

https://github.com/python/cpython/issues/110012
https://github.com/python/cpython/issues/77631
https://bugs.python.org/issue46390
https://github.com/python/cpython/issues/124651
https://nvd.nist.gov/vuln/detail/cve-2024-9287


SAST’25, September 22–26, 2025, Recife, PE Job and Hora

many issues are related to the term “CVE”21 and identified 290 CVE-
related issues in CPython (33 open and 257 closed), as shown in
Figure 6. This association underscores the relevance of OS-specific
tests in security-sensitive contexts and the potential impact they
may have on the broader software ecosystem. Given that we identi-
fied issues related to OS-specific tests (RQ3), we emphasize the need
for security-conscious release processes. This includes prioritizing
rapid patching of CVE-related issues and developing automated
tools to detect OS-specific vulnerabilities.

Figure 6: Distribution of CVE-related issues in CPython: 33
open and 257 closed.

6 Threats to Validity
Selection of issues related to OS-specific tests. To detect API to identify
issues, we have manually inspected the source code of OS-specific
test. We ended up selecting 170 issues added together across both is-
sue trackers. As this selection is purely based on reading the source
code, identification of issue number around the OS identification
API occurrences, and looking the issue number in issue tracker, the
risks of false positives (wrong issues) and false negatives (missing
issues) are reduced. To minimize incorrect mappings, after identi-
fying the issue number, we analyzed whether the issue is directly
related to the occurrence of the OS identification API.
Generalization of the results. This study focuses exclusively on
CPython, the reference implementation of the Python programming
language. While CPython is widely used and influential, the results
presented here may not generalize to other Python projects or to
systems developed in different programming languages. Future
research should replicate this analysis in other software ecosys-
tems to better understand the prevalence and nature of OS-specific
testing practices in diverse development environments.
Number analyzed tests files. In the our research questions, we quan-
titatively analyzed all instances of OS-specific tests detected in the
project, in 1,154 test files. That is, it was not necessary to select a
sample, since all instances were analyzed. For a large number of
tests, we recommend that researchers randomly select statistically
significant samples.

7 Conclusion and Further Steps
In this paper, we presented an empirical study investigating how de-
velopers implement OS-specific tests in CPython project. We exam-
ined this project and assessed their OS-specific tests quantitatively
in three research questions. Our main results can be summarized
as follows:
21https://github.com/python/cpython/issues?q=is%3Aissue%20state%3Aopen%20%20
%5BCVE-

• RQ1: OS-specific tests are common in the CPython project.
We find that 13% of the analyzed test files are OS-specific
tests. sys.platform is the most used OS identification API,
while Windows is the most targeted platform;

• RQ2:OS Identification APIs in tests are usedmore frequently
in test code (53.46%) than in test decorators (46.54%). The
decorator @unittest.skipUnless is the most used to skip
tests depending on the platform; and

• RQ3:Wefind 170 issues related toOS-specific tests in CPython.
Test decorators are the most related to issues (27.06%).

Lastly, we discussed practical implications for practitioners and
researchers. Based on our findings, we discussed the importance
of testing on multiple platforms, the relationship between issues
and related to OS-specific tests, the cascading effects that may oc-
cur with CPython-dependent systems, and we relate the issues to
vulnerabilities. As future work, we plan to extend this study by
analyzing the full set of issues in the project, including historical
data from version control. This will allow us to better understand
how the relationship between OS-specific tests and issues evolves
over time. This knowledge would provide the basis for better un-
derstanding how developers implement OS-specific tests, possibly
supporting the development of a catalog of the motivations, chal-
lenges, and solutions adopted.

ACKNOWLEDGMENTS
This research is supported by CAPES, CNPq, and FAPEMIG.

REFERENCES
[1] Vincent Aranega, Julien Delplanque, Matias Martinez, Andrew P. Black, Stéphane

Ducasse, Anne Etien, Christopher Fuhrman, and Guillermo Polito. 2021. Rotten
green tests in Java, Pharo and Python. Empirical Software Engineering 26, 6 (2021),
130.

[2] Lívia Barbosa and Andre Hora. 2022. How and why developers migrate Python
tests. In International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 538–548.

[3] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and David
Binkley. 2012. An empirical analysis of the distribution of unit test smells and
their impact on software maintenance. In International Conference on Software
Maintenance (ICSM). 56–65.

[4] Alexandru Bodea. 2022. Pytest-Smell: A Smell Detection Tool for Python Unit
Tests. In International Symposium on Software Testing and Analysis. ACM, 793–
796.

[5] Barisha Chowdhury, Md Fazle Rabbi, S. M. Mahedy Hasan, and Minhaz F. Zibran.
2025. Insights into Dependency Maintenance Trends in the Maven Ecosystem .
In International Conference on Mining Software Repositories (MSR). 280–284.

[6] CVE - Common Vulnerabilities and Exposures. June, 2025. https://www.cve.org/.
[7] Julien Delplanque, Stéphane Ducasse, Guillermo Polito, Andrew P. Black, and

Anne Etien. 2019. Rotten Green Tests. In International Conference on Software
Engineering (ICSE). IEEE, 500–511.

[8] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019.
Understanding Flaky Tests: The Developer’s Perspective. In European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
ACM, 830–840.

[9] GitHub-hosted runners. June, 2025. https://docs.github.com/en/actions/using-
github-hosted-runners/about-github-hosted-runners/about-github-hosted-
runners.

[10] CPython Glossary. June, 2025. https://docs.python.org/3/glossary.html-CPython.
[11] Negar Hashemi, Amjed Tahir, and Shawn Rasheed. 2022. An Empirical Study of

Flaky Tests in JavaScript. In International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 24–34.

[12] Andre Hora. 2023. Excluding code from test coverage: practices, motivations,
and impact. Empirical Software Engineering 28, 1 (2023), 1–33.

[13] Andre Hora, Romain Robbes, Marco Tulio Valente, Nicolas Anquetil, Anne Etien,
and Stephane Ducasse. 2018. How do Developers React to API Evolution? A
Large-Scale Empirical Study. Software Quality Journal 26, 1 (2018), 161–191.

https://github.com/python/cpython/issues?q=is%3Aissue%20state%3Aopen%20%20%5BCVE-
https://github.com/python/cpython/issues?q=is%3Aissue%20state%3Aopen%20%20%5BCVE-


On the Implementation of OS-Specific Tests: The CPython Case SAST’25, September 22–26, 2025, Recife, PE

[14] Ricardo Job and Andre Hora. 2024. Availability and Usage of Platform-Specific
APIs: A First Empirical Study. In International Conference on Mining Software
Repositories. 27–31.

[15] Ricardo Job and Andre Hora. 2024. How and Why Developers Implement OS-
Specific Tests. Empirical Software Engineering 30 (2024), 33.

[16] Ricardo Job and Andre Hora. 2025. OSTDetector: An automated tool for extracting
OS-specific Tests from Git repositories written in Python. https://doi.org/10.5281/
zenodo.10120045

[17] Ricardo Job and Andre Hora. July, 2025. On the Implementation of OS-Specific
Tests: The CPython Case. https://doi.org/10.5281/zenodo.15794483

[18] Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang. 2021. A Systematic
Review of API Evolution Literature. ACM Computing Surveys (CSUR) 54, 8 (2021),
1–36.

[19] Can Li, Jingxuan Zhang, Yixuan Tang, Zhuhang Li, and Tianyue Sun. 2024.
Boosting API Misuse Detection via Integrating API Constraints from Multiple
Sources. In International Conference on Mining Software Repositories. 14–26.

[20] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In International Symposium on Foundations of
Software Engineering. ACM, 643–653.

[21] Matias Martinez and Bruno Gois Mateus. 2022. Why Did Developers Migrate An-
droid Applications From Java to Kotlin? IEEE Transactions on Software Engineering
48 (2022), 4521–4534.

[22] Gerard Meszaros. 2007. xUnit test patterns: Refactoring test code. Pearson Educa-
tion.

[23] Costain Nachuma, Md Mosharaf Hossan, Asif K. Turzo, and Minhaz F. Zibran.
2025. Decoding Dependency Risks: A Quantitative Study of Vulnerabilities in the
Maven Ecosystem . In International Conference on Mining Software Repositories
(MSR). 270–274.

[24] Romulo Nascimento, Eduardo Figueiredo, and Andre Hora. 2021. JavaScript API
Deprecation Landscape: A Survey and Mining Study. IEEE Software 39, 3 (2021),
96–105.

[25] National Institute of Standards and Technology. June, 2025.
https://nvd.nist.gov/vuln.

[26] Fabio Palomba, Dario Di Nucci, Annibale Panichella, Rocco Oliveto, and Andrea
De Lucia. 2016. On the Diffusion of Test Smells in Automatically Generated Test
Code: An Empirical Study. In International Workshop on Search-Based Software
Testing. ACM, 5–14.

[27] Anthony Peruma, Khalid Almalki, Christian D. Newman, Mohamed Wiem
Mkaouer, Ali Ouni, and Fabio Palomba. 2019. On the distribution of test smells
in open source Android applications: an exploratory study. In International Con-
ference on Computer Science and Software Engineering. IBM Corp., 193–202.

[28] Anthony Peruma, Khalid Almalki, Christian D. Newman, Mohamed Wiem
Mkaouer, Ali Ouni, and Fabio Palomba. 2020. TsDetect: An Open Source Test
Smells Detection Tool. In European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering. ACM, 1650–1654.

[29] Piotr Przymus, Mikolaj Fejzer, Jakub Narebski, Krzysztof Rykaczewski, and
Krzysztof Stencel. 2025. Out of Sight, Still at Risk: The Lifecycle of Transi-
tive Vulnerabilities in Maven . In International Conference on Mining Software
Repositories (MSR). 329–333.

[30] Pytest. June, 2025. https://docs.pytest.org.
[31] Md Shafiullah Shafin, Md Fazle Rabbi, S. M. Mahedy Hasan, and Minhaz F. Zibran.

2025. Faster Releases, Fewer Risks: A Study on Maven Artifact Vulnerabilities
and Lifecycle Management . In International Conference on Mining Software
Repositories (MSR). 275–279.

[32] Mehedi Hasan Shanto, Muhammad Asaduzzaman, Manishankar Mondal, and
Shaiful Chowdhury. 2025. Dependency Dilemmas: A Comparative Study of Inde-
pendent and Dependent Artifacts in Maven Central Ecosystem . In International
Conference on Mining Software Repositories (MSR). 304–308.

[33] Mina Shehata, Saidmakhmud Makhkamjonoov, Mahad Syed, and Esteban Parra.
2025. Cascading Effects: Analyzing Project Failure Impact in the Maven Central
Ecosystem . In International Conference on Mining Software Repositories (MSR).
309–313.

[34] CPython source. June, 2025. https://devguide.python.org/internals/exploring.
[35] Unittest. June, 2025. https://docs.python.org/3/library/unittest.html.
[36] Tongjie Wang, Yaroslav Golubev, Oleg Smirnov, Jiawei Li, Timofey Bryksin, and

Iftekhar Ahmed. 2021. PyNose: A Test Smell Detector For Python. In International
Conference on Automated Software Engineering (ASE). IEEE, 593–605.

[37] Hao Xia, Yuan Zhang, Yingtian Zhou, Xiaoting Chen, YangWang, Xiangyu Zhang,
Shuaishuai Cui, Geng Hong, Xiaohan Zhang, Min Yang, et al. 2020. How Android
developers handle evolution-induced API compatibility issues: a large-scale study.
In International Conference on Software Engineering. 886–898.

https://doi.org/10.5281/zenodo.10120045
https://doi.org/10.5281/zenodo.10120045
https://doi.org/10.5281/zenodo.15794483

	ABSTRACT
	1 Introduction
	2 Background and Related Work
	2.1 OS Identification APIs
	2.2 OS-Specific Tests
	2.3 Related Work

	3 Study Design
	3.1 Selecting Software System
	3.2 Detecting OS-Specific Tests
	3.3 Collecting Issues
	3.4 Research Questions

	4 Results
	4.1 RQ1: Frequency of OS-specific tests
	4.2 RQ2: Location of OS identification API
	4.3 RQ3: Issues and OS-specific tests

	5 Discussion and Implications
	6 Threats to Validity
	7 Conclusion and Further Steps
	REFERENCES

