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Abstract

Developers create bug-reproducing tests that support debugging
by failing as long as the bug is present, and passing once the bug
has been fixed. These tests are usually integrated into existing test
suites and executed regularly alongside all other tests to ensure
that future regressions are caught. Despite this co-existence with
other types of tests, the properties of bug-reproducing tests are
scarcely researched, and it remains unclear whether they differ
fundamentally. In this short paper, we provide an initial empirical
study to understand bug-reproducing tests better. We analyze 642
bug-reproducing tests of 15 real-world Python systems. Overall, we
find that bug-reproducing tests are not (statistically significantly)
different from other tests regarding LOC, number of assertions, and
complexity. However, bug-reproducing tests contain slightly more
try/except blocks and “weak assertions” (e.g., assertNotEqual).
Lastly, we detect that the majority (95%) of the bug-reproducing
tests reproduce a single bug, while 5% reproduce multiple bugs. We
conclude by discussing implications and future research directions.

CCS Concepts
« Software and its engineering — Software testing and debug-
ging.
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1 Introduction

When fixing a bug, ideally, developers should create a correspond-
ing automated test that reproduces the bug, ensuring that this test
fails when the buggy code is present and passes once the bug has
been fixed [29, 32]. This best practice ensures that future regres-
sions are caught and is widely recommended: “The best way to start
fixing a bug is to make it reproducible. After all, if you can’t repro-
duce it, how will you know if it is ever fixed?” [29]. This practice
is also common in open-source projects [2, 20], for example, the
contribution guidelines of the Black project state: “If you're fixing a

This work is licensed under a Creative Commons Attribution 4.0 International License.
AST ’26, Rio de Janeiro, Brazil

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2476-3/2026/04

https://doi.org/10.1145/3793654.3793752

Gordon Fraser
University of Passau
Passau, Germany
gordon.fraser@uni-passau.de

def test_whitespaces_are_removed_from_url(self):
# Test for issue #3696
request = requests.Request("GET", " http://example.com").prepare()
assert request.url == "http://example.com/"

(a) Test in Requests (bug #3696).

def test_nonzero_multi_threading(self):
# Test that MPS does not crash if nonzero called concurrently
# See https://github.com/pytorch/pytorch/issues/100285
x = torch.rand(3, 3, device="mps")
t1l = threading.Thread(target=torch.nonzero, args=(x,))
t2 = threading.Thread(target=torch.nonzero, args=(x,))
tl.start()
t2.start()

[

(b) Test in PyTorch (bug #100285).

Figure 1: Examples of bug-reproducing tests.

bug, add a test. Run it first to confirm it fails, then fix the bug, run it
again to confirm it’s really fixed” [2].

Figure 1a shows a real example of a bug-reproducing test: it
contains a bug ID that links it to a description of the underlying bug,
which causes whitespaces to not be correctly removed from URLs
(project “requests”, bug #3696).! The test consists of a call to the API
similar to an example given in the bug report. As another example,
the test in Figure 1b additionally contains a short description, and
then exercises concurrent usage on a certain GPU, though this time
using an artificial scenario derived by the developer, rather than the
actual user-reported call (PyTorch, bug #100285).2 Note that this
test has no assertions, meaning it will fail only if the production
code raises an exception [5, 11, 18]. Both tests focus on testing
individual bugs, but bug-reproducing tests may also test multiple
bugs, as exemplified by the CPython test test_strftime, which
reproduces five bugs. There are also cases where multiple tests are
needed to reproduce a single bug properly. For instance, four tests
have been created in the Pandas project to reproduce bug #3490.

Besides their role in software development, bug-reproducing
tests are also frequently used in research, for example, in databases
of real bugs [16, 30, 31], program repair [15, 19], test reduction [17,
23], and negative/exceptional tests [5, 10, 11, 18].

In practice, bug-reproducing tests are usually integrated into
existing test suites and executed regularly alongside all other tests

!Requests: https://github.com/psf/requests/blob/79b74ef/tests/test_requests.py#L187;
https://github.com/psf/requests/issues/3696

2pyTorch: https://github.com/pytorch/pytorch/blob/d1£73fd/test/test_mps.py#L10786;
https://github.com/pytorch/pytorch/issues/100285

3CPython: https://github.com/python/cpython/blob/
d13ee0ae186f4704f3b6016dd52f7727b81f9194/Lib/test/datetimetester.py#L1586
“Pandas: https://github.com/pandas-dev/pandas/blob/a2fb11e/pandas/tests/plotting/
test_datetimelike.py#L1445-L1508
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to ensure that future regressions are caught. Despite this co-
existence with other types of tests, the properties of bug-
reproducing tests are scarcely researched, and it remains
unclear whether they differ fundamentally.

In this paper, we provide an initial empirical study to understand
bug-reproducing tests better, in order to provide a foundation for
assessing whether such tests adhere to best testing practices and
identifying potential areas for improvement. We analyze 642 bug-
reproducing tests of 15 real-world Python systems, addressing two
research questions:

RQ1: What are the code characteristics of bug-reproducing
tests? Overall, we find that bug-reproducing tests are not (sta-
tistically significantly) different from other tests regarding LOC,
number of assertions, and complexity. However, bug-reproducing
tests have slightly more try/except blocks and “weak assertions”.

RQ2: How are bugs mapped to bug-reproducing tests? The
majority (95%) of the bug-reproducing tests reproduce a single
bug, while a minority (5%) reproduce multiple bugs. Moreover,
sometimes, multiple tests are needed to reproduce a bug. We find
that 20% of the bug-reproducing tests reproduce shared bugs.

Contributions. The contributions of this study are twofold. First,
we describe the first empirical study to understand bug-reproducing
tests in the wild, in real-world systems. Second, we discuss action-
able implications and future research direction.

2 Study Design
2.1 Case Studies

We aim to study bug-reproducing tests of real-world and relevant
systems. For this purpose, we selected the top-15 most popular
Python software systems hosted on GitHub according to the number
of stars, a metric primarily adopted in the software mining literature
as a proxy of popularity [3, 26]. We focus on Python because it is
the most popular programming language nowadays, and it has a
rich software ecosystem. The 15 selected systems are Transformers
(132K stars), TheFuck (85K), PyTorch (82K), Django (80K), FastAPI
(76K), Flask (68K), Ansible (62K), CPython (62K), Scikit-Learn (60K),
Requests (52K), Scrapy (52K), Rich (50K), Pandas (43K), Black (39K),
and Sentry (39K). In total, these systems have 121,447 test methods.
Our dataset is available at: https://doi.org/10.5281/zenodo.17468629.

2.2 Detecting Bug-Reproducing Tests

Bugs are typically reported and stored in Issue Tracking Systems,
such as GitHub Issues. These systems manage not only bugs but
also other reported issues, such as new features, refactorings, and
more. Labels such as bug, new feature, and refactoring can be used to
categorize issues, but they are optional. Ideally, a bug-reproducing
test should be linked to its corresponding bug-labeled issue. Links
between code and issues can be found in various artifacts, such
as pull requests (PRs), commits, and code comments. Using such
indicators, starting from a bug-labeled issue, we can find its linked
artifacts (such as commits or PRs) that actually contain the bug-
reproducing tests. We can also perform the opposite operation: we
can start from a commit or a PR, detect issue IDs in commit/PR
messages (e.g., “fixed issue #123”), verify whether the issue is really
a bug, and then identify bug-reproducing tests. However, both
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Table 1: Bug-reproducing tests by project.

. Bug ID in...
Project Total Test Name Test Comment
CPython 264 99 165
Django 149 28 121
Scikit-Learn 81 0 81
PyTorch 64 1 63
Pandas 55 21 34
Transformers 16 0 16
Rich 5 0 5
Sentry 5 1 4
Black 2 0 2
Scrapy 1 0 1
Total 642 150 (23%) 492 (77%)

solutions present some drawbacks: (1) issues are not necessarily
properly labeled; (2) commit messages may not include issue IDs;
and (3) commits may include unrelated changes [7] (e.g., a bug fix
and a new feature).

To avoid these possible limitations, this study focuses on detect-
ing tests that the developers themselves label in the source code
as bug-reproducing. This is a conservative method where we pri-
oritize precision over recall. This solution is inspired by the rich
literature on self-admitted technical debt, which has successively
used a similar motivation to detect technical debt [22, 25]. For this
purpose, we mine test methods that directly include the words “bug”
or “regression” and refer to an issue ID in test comments or test
names. For example, test methods with comments like “# Regression
#123” or with test names like test_bug_123.

Following this method identifies 642 bug-reproducing tests in
10 out of the 15 analyzed systems, as detailed in Table 1. We note
that five projects have a higher number of bug-reproducing tests:
CPython (264), Django (149), Scikit-Learn (81), PyTorch (64), and
Pandas (55). Other projects have lower numbers: Transformers (16),
Rich (5), Sentry (5), Black (2), and Scrapy (1). Also, 23% (150) of the
bug-reproducing tests include the bug ID in their names, e.g., test_-
bug_3061.°

2.3 Research Questions

2.3.1 RQI: What are the code characteristics of bug-reproducing
tests? We compute four metrics from the bug-reproducing tests:
LOC (lines of code), number of assertions, complexity, and number
of try/except blocks. Complexity is measured by the count of control
flow structures in the test code, such as if, for, while, and try.
For comparison, we also compute the same metrics for all 121K
tests of the 15 selected systems. We apply the Mann-Whitney U-
test and Cohen effect size to verify whether the metrics of both
groups of tests differ. We further explore differences in assertions
by extracting the most used assertion commands in each group of
tests. We analyze the usage of “weak assertions”, that is, assertions
that are potentially less effective [33], such as assertNotEqual
and assertContains. Rationale: We aim to understand better
whether bug-reproducing tests differ from ordinary tests regarding

5CPython: https://github.com/python/cpython/blob/
d13ee0ae186f4704f3b6016dd52f7727b81f9194/Lib/test/test_time.py#L657
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(a) One bug per test (b) Multiple bugs per test

def test_foo(): def test_bar():
# bug #100 # bug #200

(c) One bug in multiple tests (shared bugs)

def test_qux1():|def test_qux2():
# bug #400 # bug #400

# bug #300

Figure 2: Mapping between bugs and bug-reproducing tests.

Table 2: Code characteristics of bug-reproducing tests. Q1,
Q2, 03: first, second, and third quartiles. ES: effect-size

All  Bug-Reproducing

Metric Quartile Tests Tests p-value ES
Q1 5 6
Q2 10 11 +0.064
LOC 03 20 19 <001 negligible
Mean 16 17.8
Q1 1 1
‘ 02 2 2 +0.103
Assertions 03 4 3 0.32 negligible
Mean 3 3.5
Q1 0 0
) 02 0 0 —0.003
Complexity 03 0 0 0.16 negligible
Mean 0.39 0.38
Q1 0 0
o2 0 0 +0.265
Try/except 3 0 0 <0.01 small
Mean  0.029 0.088

the analyzed metrics and whether they tend to use the same or
distinct assertion commands. Moreover, using “weak assertions”
may indicate that the tested code is somehow harder to test.

2.3.2 RQ2: How are bugs mapped to bug-reproducing tests? As
detailed in Figure 2, we focus on three possible scenarios: (a) one
bug per test, (b) multiple bugs per test, and (c) one bug in multiple
tests (shared bugs, for short). Rationale: Our goal is to reveal
how developers map bugs to tests. Ideally, a test is focused and
reproduces a single bug, as represented by scenario (a). In this case,
a failing test will clearly indicate the problem [32]. In contrast, cases
like (b) are less desirable because the test reproduces multiple bugs
(like a test verifying multiple functionalities). In this case, the test
may be harder to understand, and a failing test will not clearly
address the problem. Lastly, cases like (c) may indicate that a bug is
too complex to be revealed or checked by a single test, like a larger
functionality that is broken into smaller, testable ones.

3 Results
3.1 RQ1: Code Characteristics

Table 2 details the code metrics extracted from the bug-reproducing
tests, as well as for all 121K test methods of the 15 analyzed projects
(column All Tests). We find that the differences are statistically sig-
nificant (p-value < 0.01) for LOC, but the difference has a negligible
effect size, and the difference is significant for try/excepts with a
small effect size. This means that there are no practical differences
between bug-reproducing and all tests in LOC, assertions, and com-
plexity, while there are significant/small differences for try/excepts.

Observation 1: Overall, bug-reproducing tests are not (statisti-
cally significantly) different from other tests regarding the number
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Table 3: Top-25 most commonly used assertions (legend: weak
assertions and exclusive weak assertions ).

All Tests (8 weak assertions, 2 exclusives)

assertEqual, assert, assertTrue, assert_frame_equal, assertFalse, assertln, assertls,
assert_series_equal, assertIsInstance, assert_index_equal, assertIsNone, assertListE-
qual, assert_numpy_array equal, assertNotEqual, assertSequenceEqual, assertNotln,

assertIsNotNone , assertExpectedInline, assertContains, assert_equal, assert_called_with,

assert_produces_warning, assertAlmostEqual , assertNumQueries, assertQuerySetEqual

Bug-Reproducing Tests (11 weak assertions, 4 exclusives)

assertEqual, assert, assertTrue, assertls, assertQuerySetEqual, assertIsInstance, assertSe-
quenceEqual, assertFalse, assertNumQueries, assert_index_equal, assertIsNone, assertIn, as-

sert_series_equal, assert_frame_equal, assertContains, assertNotHasAttr , assertNotIn, as-
sertRedirects, assert_numpy_array_equal, assertNotEqual, assertNotContains , assertIsNot,

assert_called_with, assertCountEqual , assertLess

Table 4: Mapping between bugs and bug-reproducing tests.

# %

. Tests reproducing one bug 613 95%
One/Multiple Tests reproducing multiple bugs 29 5%
Exclusive/Shared Tests reproducing exclusive bugs 508  80%

Tests reproducing shared bugs 134 20%

of lines of code, number of assertions, and complexity. However,
bug-reproducing tests tend to have slightly more try/except blocks.

Despite the similarities, considering the overall comparison, we
also find an important difference between the groups. First, 6%
of the bug-reproducing tests have at least one try/except block,
while this value for all tests is only 2%. Second, despite having an
equivalent number of assertions, they are not necessarily the same.
To further investigate this potential difference, Table 3 details the
top-25 most commonly used assertion commands in both all tests
and bug-reproducing tests. We paid special attention to the usage
of “weak assertions”, that is, assertions that are potentially less
effective [33], such as assertNotEqual, assertAlmostEqual, and
assertContains. We find 8/25 weak assertions in all tests (from
which 2 are exclusives), while 11/25 in bug-reproducing tests (from
which 4 are exclusives).

Observation 2: Bug-reproducing tests contain slightly more
“weak assertions” (e.g., assertNotEqual and assertContains) than
other tests. 6% of the bug-reproducing tests have try/except blocks.

3.2 RQ2: Bug to Test Mapping

Table 4 shows that 95% of the bug-reproducing tests handle a single
bug, while 5% handle multiple bugs. For example, the two bug-
reproducing tests presented in Figure 1 focus on a single bug. In
contrast, the Django test test_more_more_more® reproduces six
bugs (#10199, #10248, #10290, #10425, #10666, and #10766).
Observation 3: The majority (95%) of the bug-reproducing tests
reproduce a single bug; a minority (5%) reproduce multiple bugs.
We also explore whether the bugs are exclusive or shared among
the bug-reproducing tests (Table 4). We find that 80% of the tests
reproduce exclusive bugs, that is, bugs that are tested only by a

®Django: https://github.com/django/django/blob/790f0f8/tests/aggregation_regress/
tests.py#L1026
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single test. In contrast, 20% of tests reproduce shared bugs, that is,
bugs that are tested by multiple tests. For example, the bug #11371
in Django is tested by test_post and test_put.’

Observation 4: Sometimes, multiple tests are needed to repro-
duce a single bug. We find that 20% of the bug-reproducing tests
reproduce shared bugs.

4 Discussion

Improve tests with weak assertions and try/except blocks.
Overall, we detected that bug-reproducing tests contain slightly
more try/except blocks and “weak assertions” than other tests. Ver-
ifying exception-raising via assertRaises commands is a better
choice than try/except blocks to properly assert that an exception is
raised. Moreover, using strong assertions is a better choice to verify
the program’s output more effectively. Several reasons may lead
to the use of such weak assertions and try/except blocks, such as
developer inattention or vague user-written bug reports. Another
possible explanation is that such tests suffer from poor observabil-
ity [28]. In this context, tests without assertions may happen due to
this lack of observability: when it is hard to observe the program’s
output, developers cannot write assertions [28]. We hypothesize
that some bug-reproducing tests face similar limitations, lacking
straightforward methods for observing outputs, which leads to the
use of weak assertions or try/except blocks as a workaround. Fu-
ture research could explore such tests, proposing solutions to enhance
observability and recommending the usage of strong assertions.

Split multi-bug test into multiple single-bug tests. Ideally, a
test should reproduce a single bug so that a failing test indicates
the problem [32]. A test that reproduces multiple bugs is harder to
understand, and its failure will not clearly address the problem. We
found that the majority of tests target a single bug (95%), but some
tests target multiple bugs (5%). This can be an opportunity to support
developers (e.g., via contribution study [4, 6, 9]) by investigating the
possibility of turning one multi-bug test into multiple single-bug tests.

Avoid naively replicating bug-reproducing scenarios. While
performing our study, we noticed multiple bug-reproducing tests
that originated almost entirely from bug-reproducing scenarios re-
ported by users in the issue tracker. For instance, the PyTorch bug
#116095% presents a bug scenario that is replicated in test test_-
cross_entropy_loss.’ Similarly, the CPython bug #620179'° in-
cludes a bug scenario that ends up in test_ipow.!! When creating
test cases, ideally, developers should strive to minimize tests for bug
reproduction, a technique known as test reduction [13, 14, 17, 23, 27].
A reduced test can help identify the central problem, allowing de-
velopers to spend more time determining the solution [27]. In this
context, one potential problem happens when developers copy and
paste bug-reproducing scenarios directly into tests. For example, in
the two examples provided, neither test included assertions; instead,
they simply replicated the bug scenario as reported. This approach
misses the opportunity to validate expected outputs and confirm

"Django: https://github.com/django/django/blob/790f0f8/tests/test_client_regress/
tests.py#L1083-L1101

8https://github.com/pytorch/pytorch/issues/116095
“https://github.com/pytorch/pytorch/blob/d1f73fd844/test/test_mps.py#L4860
Ohttps://bugs.python.org/issue620179
Uhttps://github.com/python/cpython/blob/4767a6e31c055/Lib/test/test_descr.py#
L3973
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that the bug has been fixed. Future research could investigate meth-
ods to identify this practice and warn developers about potentially
less effective bug-reproducing tests.

5 Limitations

We analyzed a large set of bug-reproducing tests, but they do not
represent all possible bug-reproducing tests in the selected systems.
Our heuristic detected bug-reproducing tests that are explicitly ad-
mitted by developers in the source code. Therefore, further studies
could increase recall and expand the set of bug-reproducing tests.

6 Related Work

Bug reproducing tests are related to multiple aspects of testing
research. For example, databases of real bugs (e.g., Defects4] [16],
BugsInPy [31], and BugSwarm [30]) are typically accompanied
by bug-reproducing tests. Program repair techniques may rely on
failing tests to create patches that make the test suite pass [15,
19]. Creating a bug-reproducing test is also part of the process
of test reduction [17, 23], a technique that aims to minimize test
cases for bug reproduction. The importance of test reduction is
highlighted in projects such GCC [13], LLVM [14], and WebKit [27].
In those studies, the main focus is on the buggy/fixed code, while
bug-reproducing tests are present to support that the fixed code
works properly. Lastly, bug reproducing tests are also related to
a set of studies in the context of testing negative and exceptional
tests [5, 10, 11, 18] and may support a better understanding of them.

7 Conclusions and Future Work

We provided an initial empirical study to understand bug-reproducing
tests better. Overall, we found that bug-reproducing tests are not
different from other tests regarding LOC, number of assertions,
and complexity, but they contain slightly more try/except blocks
and “weak assertions”. We also found that the majority (95%) of the
bug-reproducing tests reproduce a single bug, while 5% reproduce
multiple bugs. We concluded by discussing multiple possibilities to
improve bug-reproducing tests.

Future Work: First, this study assesses syntactic differences be-
tween bug-reproducing tests and others. Future work could look
at semantic properties, e.g., do they differ in terms of coverage
achieved per test or mutants killed? Second, understanding the
differences between bug reproducing and “regular” tests is also
important to automatically generate such tests, e.g., by developing
adequate prompts that reflect these properties when using LLMs to
generate tests [1, 8, 12, 21, 24]. Finally, as testing is generally well
adopted in the industry, some companies invest huge amounts of
resources into test execution infrastructure. In this context, one
important question is whether bug-reproducing tests and other
tests need to be executed at the same frequency, which may lead to
a potential reduction of cost.
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