Testing Framework Migration with Large Language Models

Altino Alves Jodo Eduardo Montandon Andre Hora
DCC, UFMG DCC, UFMG DCC, UFMG
Belo Horizonte, Brazil Belo Horizonte, Brazil Belo Horizonte, Brazil
altinojunior@dcc.ufmg.br joao@dcc.ufmg.br andrehora@dcc.ufmg.br
unittest pytest

Abstract

Python developers rely on two major testing frameworks: unittest
and Pytest. While Pytest offers simpler assertions, reusable fix-
tures, and better interoperability, migrating existing suites from
unittest remains a manual and time-consuming process. Automat-
ing this migration could substantially reduce effort and accelerate
test modernization. In this paper, we investigate the capability of
Large Language Models (LLMs) to automate test framework migra-
tions from unittest to Pytest. We evaluate GPT 40 and Claude
Sonnet 4 under three prompting strategies (Zero-shot, One-shot,
and Chain-of-Thought) and two temperature settings (0.0 and 1.0).
To support this analysis, we first introduce a curated dataset of real-
world migrations extracted from the top 100 Python open-source
projects. Next, we actually execute the LLM-generated test migra-
tions in their respective test suites. Overall, we find that 51.5% of
the LLM-generated test migrations failed, while 48.5% passed. The
results suggest that LLMs can accelerate test migration, but there
are often caveats. For example, Claude Sonnet 4 exhibited more con-
servative migrations (e.g., preserving class-based tests and legacy
unittest references), while GPT-40 favored more transformations
(e.g., to function-based tests). We conclude by discussing multiple
implications for practitioners and researchers.

CCS Concepts
« Software and its engineering — Software testing and debug-

ging.

Keywords

Software Testing, Test Migration, Large Language Models, Python,
Unittest, Pytest

ACM Reference Format:

Altino Alves, Joao Eduardo Montandon, and Andre Hora. 2026. Testing
Framework Migration with Large Language Models. In 7th ACM/IEEE In-
ternational Conference on Automation of Software Test (AST 2026) (AST °26),
April 13-14, 2026, Rio de Janeiro, Brazil. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3793654.3793749

1 Introduction

Software testing is fundamental to avoiding regressions and catch-
ing bugs. Currently, Python developers can rely on two main testing
frameworks: unittest [55] and Pytest [41]. Pytest provides some ad-
vantages compared to unittest, including simpler assertions, reuse
of fixtures, and interoperability [4, 41].

This work is licensed under a Creative Commons Attribution 4.0 International License.
AST ’26, Rio de Janeiro, Brazil

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2476-3/2026/04

https://doi.org/10.1145/3793654.3793749

(before migration) (after migration)

9+ @pytest.fixture

10 + def prompt_buffer():

1+ return Buffer()

12

13

14

15

16
17

= .

19 + @pytest.fixture

age(self.window) 20+ def window(editor_buffer):

21+ return Window(editor_buffer)

2 .

23+

20+ @oytest. fixture

25 + def tab_page(window):

26+ return TabPage (window)

7+ def test_initial(window, tab_page):
ce(self. tabpage. root, Vsplit) 8 + assert isinstance(tab_page.root, VSplit)
1f. tabpage. root, [self.window]) 9 + assert tab_page.root == [window]
12+ def test_vsplit(tab_page):
13 + # Create new buffer.

14 + b= Buffer()
15 + eb = EditorBuffer(b, 'bl1')

@pytest.fixture
def editor_buffer(prompt_buffer):
return EditorBuffer (prompt_buffer, 'b1')

0 -
N -
12 -
ey -
N - self. tabpage

44+t

6 - def
il -
18 -

i -
B -
2l - eb = EditorBuffer('b1’, b)

2 7+
250 - # Insert in tab, by splitting. 18+

% - self. tabpage.vsplit(eb)
B -
8 -
29 - self.ass

Insert in tab, by splitting.
tab_page.vsplit(eb)

sInstance(self. tabpage.root, VSplit)
qual(len(self. tabpage. root), 2)

20 + assert isinstance(tab_page.root, VSplit)
21 + assert len(tab_page.root) == 2

Figure 1: Migration from unittest to Pytest (pyvim).

Multiple Python projects—such as Pandas, NumPy, ScikitLearn,
Requests, and Flask—have migrated to or are currently migrating
to Pytest due to these benefits [4]. For example, Figure 1 presents a
migration from unittest to Pytest in pyvim.! This migration con-
sists of three major modifications. The first chunk shows that the
unittest setUp method is being split into four @Pytest.fixtures
properties. The second and third chunks modify test methods to
receive these fixtures and use assert statements during the test
verification. Section 2 explains this migration in more detail.

Pytest allows projects to run tests written in unittest, thus en-
abling a gradual migration process. However, this migration
can be time-consuming given the complexity of test suites: a
recent study found that some projects may take months or
years to conclude the migration or simply never conclude
it [4]. Besides, using two different testing frameworks at the same
time can increase the effort needed to maintain the test suite. Such
projects could benefit from an automated solution to assist devel-
opers in migrating these tests faster and effectively.

Recently, Large Language Models (LLMs) have been evaluated in
multiple software engineering tasks, including source code and tests
generation, bug fix, code smells detection, and to support the code
review process [16, 20, 22, 24, 27, 36, 38, 40, 52, 54]. Other studies
investigated the use of LLMs to support API migration [1, 29].
However, to the best of our knowledge, no study has explored the
migration of the test frameworks.

!https://github.com/prompt-toolkit/pyvim/commit/7e1c7bfb505cefba468

https://orcid.org/0009-0007-2709-5950
https://orcid.org/0000-0002-3371-7353
https://orcid.org/0000-0003-4900-1330
https://doi.org/10.1145/3793654.3793749
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3793654.3793749
https://github.com/prompt-toolkit/pyvim/commit/7e1c7bfb505cefba468

AST °26, April 13-14, 2026, Rio de Janeiro, Brazil

In this paper, we investigate the capability of LLMs to assist devel-
opers during the migration of test frameworks. For this purpose, we
built a dataset with over 900 real-world migrations from unittest
to Pytest, manually implemented by developers [3]. Next, we se-
lected a subset of migrated tests that still exist by September 2025,
and thus remain executable. This process resulted in a final set of
40 isolated migrations that are investigated in this paper. In our
experiment, we rely on GPT-40 and Claude Sonnet 4 to migrate
Python tests from unittest to Pytest. We applied three prompt-
ing strategies—Zero-shot, One-shot, and Chain-of-Thought, under
two temperature settings (0.0 and 1.0), generating a total of 480
migration variants.

To ensure the migration proposed by the LLMs was correct, we
reproduced the test environment of each migration and actually
executed both LLM-migrated and developer-migrated tests. We then
compared the results of both executions in terms of test correctness
(i.e., test was successfully executed) and test coverage (i.e., test
coverage remained the same). Both models achieved an overall cor-
rectness rate of 48.54%, while successful migrations maintained the
same test coverage, indicating that LLMs did not modify runtime
behaviour. However, 25 out of 40 migrations presented at least one
failing configuration (247 total failures), mostly related to depen-
dency handling, fixture adaptation, or setup inconsistencies. While
Claude Sonnet 4 preserved class-based structures and unittest pat-
terns, GPT-4o favored function-based rewrites aligned with Pytest,
revealing distinct yet complementary migration styles. We conclude
by discussing implications for researchers and practitioners.

Contribution. The contributions of this paper are twofold: (1) we
provide the first study to explore test migration with LLMs and (2)
we discuss multiple implications for researchers and practitioners.

2 Background and Motivation

Unittest [55] and Pytest [41] are the most popular testing frame-
works in Python [30]. Unittest belongs to the Python standard
library, while Pytest is a third-party testing framework. Unittest
relies on classes and inheritance to create tests (i.e., the test class
needs to extend the unittest class TestCase), whereas Pytest tests
can be regular functions, with the test prefix. Consequently, Pytest
tests tend to be less verbose than unittest ones. Another differ-
ence is the assertions: unittest provides self.assert* methods
(e.g., assertEqual, assertTrue, etc.), while Pytest allows devel-
opers to use the regular Python assert statement for verifying
expectations and values. There are many other differences; for ex-
ample, Pytest facilitates the creation of parameterized tests and the
reuse of fixtures.

Due to the advantages of Pytest, many Python projects have
migrated to this framework. A prior study discovered that 27% of
top-100 most popular Python projects migrated or were migrating
to Pytest [4]. To gain more insights into the relevance of this prob-
lem, we replicated this study in the same set of popular projects,
found that the migration rate has increased to 37%.

Migrating from unittest to Pytest may involve at least the follow-
ing major steps: (1) removing test from class and moving to regular
functions; (2) replacing assertions with Pytest asserts; and (3) mov-
ing setup/teardown operations to Pytest fixtures. Steps 1 and 2 is
relatively simple to apply because the migration between unittest

Altino Alves, Joao Eduardo Montandon, and Andre Hora

and Pytest is almost direct. For example, the test test_vsplit in
Figure 1 only replaces the unittest assertions assertIsInstance
and assertEqual by the Pytest assert statement.

On the other hand, migrating the remaining steps is harder to
accomplish because there is no direct mapping between unittest
and Pytest. For example, the unittest setUp method is split into four
Pytest fixture functions in Figure 1: prompt_buffer, editor_buffer,
window, and tab_page. The two tests (test_initial and test_-
vsplit) are then adapted to receive the fixtures via parameters in
Pytest. When Pytest runs a test, it looks at the parameters of the
test function and then searches for fixtures with the same names
as those parameters [4, 41]. Once Pytest finds them, it runs those
fixtures, captures what they returned, and passes those objects into
the test function as arguments.

The number of popular Python projects that decided to migrate
from unittest to Pytest increased from 27% to 37%, reinforcing the
need for an automated solution to assist this migration process.

3 Study Design
3.1 Overview

Figure 2 summarizes our study design. The methodology begins
with selecting real-world Python projects and detecting framework
migrations. Next, migration commits are analyzed to build the
TestMigrationsInPy dataset. We then selected migrations that were
still available in the latest commit of their projects. These migrations
were used in our experiment, where we asked LLMs to generate
the migration for each scenario, replaced the original migration
with the one produced by the LLM, and evaluated its correctness
and coverage. Next, we detail each step.

3.2 Case Study

In this study, we analyze real-world and relevant software systems.
We analyze the top-100 Python projects with the most stars on
GitHub. This metric is widely adopted as a measure of the popularity
of software projects [7, 51]. These 100 projects came from a prior
study that empirically analyzed the migration from unittest to
Pytest [4]. The set includes projects broadly adopted worldwide,
such as Pandas (data analysis library), Flask (web development
framework), Requests (library for performing HT TP requests), and
Ansible (open-source automation software).?

3.3 Detecting Migrations from Unittest to Pytest

We relied on the tool proposed by Barbosa and Hora [4] to detect
projects that migrated from unittest to Pytest. Basically, the tool
traverses throughout the commit history and analyzes the removed
and added lines of each commit. One commit is considered migration
commit if at least one of the following rules applies:

[label=(3), itemsep=2pt]

(1) Assert migration: the commit removes unittest self.assertx
and adds assert keyword.

2The complete list of systems can be found in the original dataset: https://doi.org/10.
5281/zenodo.5847361.

https://doi.org/10.5281/zenodo.5847361
https://doi.org/10.5281/zenodo.5847361

Testing Framework Migration with Large Language Models

AST °26, April 13-14, 2026, Rio de Janeiro, Brazil

Selection Models Evaluation
Case Study Q
Selectmg Top-100 Python LLMs Setup E Evaluation of the LLM-Migrated Tests
Projects on GltHub
models)
Identlfylng Migration (@ ChatGPT 40 j @ Migration Effectiveness
Commits (Y% Claude Sonnet 4 j Evaluates whether LLMs generate functional test
unittest — pytest i = migrations in real-world environments. Y,
+
Migration Coverage
Extractlng Isolated X prompts . @ 9 9
Mlgratlons — { | _ Compares code coverage before and after the
T H (Zero-shot j migrations.
estMlgratlons\nPy Dataset : J
(One-shot j
(Chain-of-Thought j @ Migration Issues
Detect|on of Current i i . . -)
Identifies the causes of failed migrations during
Avallable Migrations ;
+ execution.
Up to September 2025 /
temperatures
; @ Migration Properties
H (Deterministic (0.0)] ; . .
CIaSS|fy|ng Migration ; : Analyzes structural, stylistic, and semantic patterns
© leflculty i (Neutral (1.0) j | introduced by LLMs.)
Simple or Complex !

Figure 2: Overview of the study design.

(2) Fixture migration: the commit removes unittest fixtures
(e.g., setUp and tearDown) and adds Pytest fixtures (e.g.,
@pytest.fixture).

(3) Import migration: the commit removes import unittest
and adds import Pytest.

(4) Skip migration: the commit removes unittest test skips
(e.g., @unittest.skipIf) and adds Pytest test skips (e.g.,
@Pytest.mark.skipif).

(5) Expected failure migration: the commit removes unittest
expected failure (i.e., @unittest.expectedFailure)and adds
Pytest expected failure (i.e., @ytest.mark.xfail).

For our study, we executed the migration detection tool on the
top-100 selected projects, which detected 690 migration commits in
37 projects. This is a significant increase when compared to the orig-
inal study, which found 330 migration commits in 27 projects [4].

3.4 Extracting Isolated Migrations

The next step in our study design is to create a dataset of migrations
that can be used in our research as a ground truth.

We briefly describe the framework used to construct our TestMi-
grationsInPy dataset [3].3 The dataset was built based on the manual
analysis of the migration commits collected in the previous step.
It is important to notice that a migration commit may have one or
more migrations from unittest to Pytest. However, it is well-known
that commits may include unrelated (i.e., tangled) changes [17],
e.g., it may perform migration and add/remove/update assertions.
To avoid this problem, we focused on detecting isolated migrations,
that is, migrations that simply replace unittest with Pytest, and
no other unrelated changes are involved. Moreover, to avoid noise
caused by large commits, we filtered commits that modified more
than 5 files. Of the 690 migration commits collected in the previous

3The real dataset name is omitted due to the double-blind review.

step, we manually detected 923 isolated migrations that are used
to create our dataset TestMigrationsInPy. This dataset is adopted as
the ground truth in this research, but it can be used by any other
research in the context of framework migration.

Dataset: TestMigrationsInPy contains 923 real-world migrations
from unittest to Pytest (https://github.com/altinoalvesjunior/
TestMigrationsInPy).

3.5 Detection of Current Available Migrations

We applied a multi-step filtering process to keep only migrations
that can be validated, i.e., can be executed at the time this study
is conducted. From the 923 migrations available in the TestMigra-
tionsInPy dataset, we first checked whether the migrated test files
were present in the latest project versions. We then manually veri-
fied whether the migrated tests were still present in those files. Fi-
nally, we reproduced the development environment of each project
to ensure it could be built and executed locally. For this paper, we
only included for analysis the migrations satisfying all these criteria,
considering project states up to September 30, 2025.

After applying these filtering steps, 883 out of the 923 examined
migrations were excluded. In most cases (53%), the test files still
existed, but the migrated methods were removed or their logic had
changed substantially. Another 38% showed partial preservation,
with only some methods remaining, often refactored or simplified.
The remaining 9% referred to test files that had been deleted.

Finally, we selected 40 migrations to assess in this research. From
these 40 migrations, 30 are classified as simple and 10 as complex
cases according to our classification in Section 3.6. These 40 migra-
tions originated from seven projects, as presented in Table 1.

https://github.com/altinoalvesjunior/TestMigrationsInPy
https://github.com/altinoalvesjunior/TestMigrationsInPy

AST °26, April 13-14, 2026, Rio de Janeiro, Brazil

Zero-Shot Prompt

Given the Python test code below, migrate it from the unittest
framework to the Pytest framework. The migration should simply
adapt the test code from unittest to Pytest, without adding new func-
tionalities. The output should contain only the migrated code, without
additional explanations. Ensure that the output is complete, keeping
all original lines of the code that were not changed, including comments.

TEST BEFORE MIGRATION

r

(a) Zero-Shot prompt (base prompt used for all prompts).

Chain-of-Thoughts Prompt

Use the steps below as a guide for the migration. You do not need to
follow them exactly as described, but they should be able to help with
the migration:

1. Analysis and Planning:

- Identify the tests written with unittest.

- Catalog the unittest assertion methods (assertEqual, assertTrue, as-
sertln, etc.).

- Spot the unittest fixture methods such as setUp, tearDown, setUpClass,
and tearDownClass.

2. Migration Procedure:

- Remove the inheritance of unittest.TestCase.

- Convert unittest fixture methods to Pytest fixtures.

- Transform unittest test methods into Pytest test functions.

- Replace unittest assertion methods (self.assert*) with Pytest assert
statements.

- Adapt the test of exceptions in unittest (self.assertRaises) to the Pytest
syntax (Pytest.raises).

- Implement additional Pytest fixtures if necessary to optimize resource
setup and teardown.

- Use advanced Pytest features such as test parameterization if applicable.

TEST BEFORE MIGRATION #:##

(b) Chain-of-Thought prompt

Altino Alves, Joao Eduardo Montandon, and Andre Hora

One-Shot Prompt

Use the following test code blocks, enclosed in triple double quotes, as
examples of migrations, and follow the same patterns used in it.

Code before migration (unittest):

wnn

import unittest
class TestMyAPI(unittest.TestCase):

def setUp(self):
self.user_data = {"name": "John Doe", "email"
"johndoe@example.com"}

def test_create_user(self):
response = create_user(self.user_data)
self.assertEqual (response.status_code, 201)
self.assertEqual (response.json()['name'], self
user_datal ' name '])

def test_create_user_invalid_data(self):
with self.assertRaises(ValueError):
create_user ({"name": ""})

Code after migration (Pytest):

W

import Pytest

@Pytest. fixture
def user_data():
return {"name": "John Doe", "email":
johndoe@example.com"}

def test_create_user(user_data):
response = create_user(user_data)
assert response.status_code == 201
assert response.json()['name'] == user_data['name']

def test_create_user_invalid_data():
with Pytest.raises(ValueError):
create_user ({"name": ""3})

wnn

(c) One-Shot prompt

Figure 3: Prompt strategies adopted in this work.

Table 1: Origin of the selected migrations.

owner/name Stars URL

ansible/ansible 66,900 https://github.com/ansible/ansible
apache/airflow 43,000 https://github.com/apache/airflow
ray-project/ray 39,600 https://github.com/ray-project/ray
httpie/httpie 36,900 https://github.com/httpie/httpie
cookiecutter/cookiecutter 22,200 https://github.com/cookiecutter/cookiecutter
beetbox/beets 14,100 https://github.com/beetbox/beets
redis/redis-py 13,300 https://github.com/redis/redis-py

3.6 Classifying Migration Difficulty

As discussed in Section 2, not all migrations have the same level
of difficulty. For example, migrations involving only changes of
assertions are potentially easier to perform than migrations of
fixtures. To further explore this variation, we classify the migration
into simple or complex.

Simple migrations involve only direct changes from unittest to
Pytest, such as converting classes that inherit fromunittest.Test-
Case into standalone test functions and replacing unittest assertions
(e.g., self.assertEqual(a,b)) with native assert statements. An
example of a simple migration is test_candle_int_4 from the
termgraph project.* Complex migrations, on the other hand, require
structural adaptations and the use of additional Pytest resources.
They typically involve fixtures, refactoring of setUp/tearDown,
mocks, asynchronous tests, or interactions with external compo-
nents such as I/O and/or network resources. They may also include
adjustments to assertion logic. An example of a complex migration
is setup_attrs from the airflow project.’

“https://github.com/sgeisler/termgraph/commit/d5665248b7d596cabe0as
Shttps://github.com/prompt-toolkit/pyvim/commit/7e1c7bfb505cefbad6s

https://github.com/ansible/ansible
https://github.com/apache/airflow
https://github.com/ray-project/ray
https://github.com/httpie/httpie
https://github.com/cookiecutter/cookiecutter
https://github.com/beetbox/beets
https://github.com/redis/redis-py
https://github.com/sgeisler/termgraph/commit/d5665248b7d596cabe0a5
https://github.com/prompt-toolkit/pyvim/commit/7e1c7bfb505cefba468

Testing Framework Migration with Large Language Models

3.7 LLMs Setup

We selected OpenAI’s GPT 4o because it represents the state of the
art in code generation [40]. We also selected Anthropic’s Claude
Sonnet 4 due to its consistent superiority over other large language
models—including OpenAT’s, Google’s Gemini, and DeepSeek—in
activities involving code understanding and generation [5, 21].

The prompt used to evaluate both models was inspired by prior
research on library migration [1]. Specifically, we explore three
different prompting methods: Zero-Shot [47], One-Shot [12] and
Chain Of Thought [57]. While the Zero-Shot approach contains only
the task description, the One-Shot strategy adds a single example,
allowing the model to have access to a desired structure before
generating the answer. The Chain-of-Thought approach introduces
a step-by-step reasoning process that leads the model toward the
outcome. Figure 3 details the prompts used in our research.

To ensure a balanced evaluation between determinism and cre-
ativity, we considered two temperature values: 0.0 (deterministic)
and 1.0 (neutral). The deterministic value produces reproducible
outputs, reflecting the model’s reliability in constrained scenar-
ios [43]. The neutral configuration preserves the model’s default
probability distribution and enables a balanced degree of creativity
and diversity in the generated code [35].

Finally, for each of the 40 selected migrations, we created three
prompts (Zero-Shot, One-Shot, and Chain-of-Thoughts), and exe-
cuted each twice (under deterministic and neutral configurations)
for both models (GPT 4o and Claude Sonnet 4). As a result, we
performed 480 requests, i.e., 40 migrations X 3 prompts X 2 tem-
peratures X 2 models. For this purpose, we developed a script to
access GPT 4o and Claude Sonnet 4 APIs. The results were stored
in structured format containing the migration returned as response
and the request setup,i.e., model, prompt strategy, and temperature.

3.8 Evaluation of the LLM-Migrated Tests

To evaluate the effectiveness of the migration process, we executed
all the LLM-migrated test on the original projects’ test suites. For
each project, we cloned the latest available tag or release on GitHub
(up to September 30th, 2025) into a local environment to reproduce
its original setup. For example, we installed all required depen-
dencies, downloaded necessary Docker images, and configured
auxiliary components. The goal was to ensure a fully functional
testing environment.

Next, we manually edited the original test files and replaced
the migrated source code with one of the LLM-migrated versions;
the rest of the project remained unchanged. For each replacement,
we executed the test suite and recorded whether the test case had
PASSED or FAILED. We also collected the project-level coverage
for every execution using coverage.py [14]. This allowed us to
quantify the structural impact of each migration and compare it
against the baseline coverage of the original tests.

We examined the differences between the migration performed
by the LLMs and the original one performed by the developers.
Specifically, we first looked for duplicated answers to quantify how
often the LLMs generated equivalent code despite variations in
prompting configuration. Next, we extracted structural elements
important to implement tests in Pytest, such as assert, @pytest.-
fixture, pytest.raises.

AST °26, April 13-14, 2026, Rio de Janeiro, Brazil

3.9 Research Questions

The goal of this study is to evaluate the effectiveness of LLMs at mi-
grating tests from unittest to Pytest. We assessed the migrations
generated by the LLMs with respect to their correctness, coverage,
issues, and changes. We propose four research questions:

RQ1: Can LLMs generate correct test migrations? This question
explores whether the LLMs generate valid migrations. We consider
that LLM-generated migrations are correct when they can be suc-
cessfully executed in the test environment of their projects. We
explore the migration in five perspectives: (i) model, (ii) tempera-
ture, (iii) strategy, (iv) difficulty, and (v) project.

RQ2: Do LLMs-generated migrations change test coverage?
This question evaluates whether LLM-generated migrations not
only produce valid tests, but if they keep their original intent. We
hypothesize that changes in code coverage mean that a correct but
different test was generated by the LLM.

RQ3: What are the errors in LLMs-generated migrations tests?
Here, we investigate the cases where LLM-generated migrations
failed to execute. This analysis aims to understand the underlying
causes of these failures, such as structural inconsistencies, missing
methods, or logical inconsistencies introduced during migration.

RQ4: Which changes are mostly introduced in LLMs-generated
migrations tests? Finally, this RQ analyzes multiple properties
of LLM-generated migrations, including changes in code structure
and duplicated migrations.

4 Results

4.1 ROQ1: Correctness of Test Migrations

We find that 247 out of 480 (51.5%) LLM-generated migrations
have failed, i.e., returned FAILED. Conversely, 233 migrations were
successfully executed, i.e., returned PASSED. Although the number
of successful migrations almost matches the unsuccessful ones,
most migrations did not preserve the functional behavior of the
original tests. The remainder of this section focuses on analyzing the
successful migrations in five perspectives: (i) model, (ii) temperature,
(iii) strategy, (iv) difficulty, and (v) project.

4.1.1 By Model. Table 2 shows that Claude Sonnet 4 achieved
slightly higher correctness, with 124 (51.66%) migrations returned
PASSED, while GPT-4o reported 109 (45.41%). The difference of 6.25
points between the models is modest, but suggests that Claude may
handle certain contextual and semantic aspects of the migration
process more reliably. This benefit might be due to differences in
how the models are built and fine-tuned. Recent research shows
how these differences can affect the way LLMs find errors and
change code [8, 42].

4.1.2 By Temperature. Claude Sonnet 4 maintains the same cor-
rectness at neutral and deterministic approaches, with 62 migrations
PASSED in each case (124 in total, 53.21%), indicating low sensitivity
to temperature, as shown in Table 2. GPT-40 shows only a minimum
increase from 54 (23.17%) in deterministic to 55 (23.60%) in neutral.
These results suggest that temperature has a negligible impact on
correctness. Prior studies report similar stability across temperature
ranges in reasoning and code-generation tasks [44, 59].

AST °26, April 13-14, 2026, Rio de Janeiro, Brazil

Altino Alves, Joao Eduardo Montandon, and Andre Hora

Table 2: Successful migrations by model, temperature, strategy, and difficulty.

Model
Migration Difficulty #Migrations Prompt Strategy GPT 40 Claude Sonnet 4 Total
Deterministic (0.0) Neutral (1.0) Deterministic (0.0) Neutral (1.0)
Simple Zero-shot 15 15 16 16 62
(asselj Jions and raises) 30 One-shot 14 15 15 15 59
Chain-of-Thought 16 16 16 16 64
Complex Zero-shot 2 2 6 6 16
(ﬁxtu]:es mocks, integrations, I/0) 10 One-shot 4 3 4 4 15
’ ’ ’ Chain-of-Thought 3 4 5 5 17
Total 54 55 62 62 233
4.1.3 ByStrategy. Overall, the Chain-of-Thought strategy yielded Table 3: Successful migrations by project.
the best overall correctness, with 81 migrations marked as PASSED
(34.76%) across both models, as summarized in Table 2. Claude Project Number of Migrations Exec. Success %
Sonnet 4 performed better under the Zero-shot approach, with 44 # Simple Complex
migrations returned PASSED (35.48%) out of the model’s 124 suc- ansible/ansible 14 13 1 168 167 99.4%
: Y : : httpie/httpie 2 1 1 24 20 83.3%
cessful executions. GPT-40, on the other hand, achieved its best beetbos/hoots . . 5 i % oo
correctness with the Chain-of-Thought strategy, with 39 (35.78%) cookiecutter/cookiecutter 3 1 2 36 16 44.4%
. . full d £ th del’ ful redis/redis-py 13 13 0 156 0 0%
migrations successfully executed out of the model’s 109 successtu. apache/airflow 3 0 3 36 0 0%
cases. Conversely, the One-shot approach yielded lower success ray-project/ray 1 1 0 12 0 0%
Total 40 30 10 480 233

rates for both models. Prior studies have shown that example-based
prompting can induce representational bias or over-specialization
toward the provided instance, limiting output diversity and gener-
alization [6, 53]. A single example may lead LLMs to anchor their
results on that specific instance and generate migrations consistent
with the example but misaligned with other valid cases.

4.14 By Difficulty. Simple migrations presented higher success
rates in both models, confirming that tasks requiring just syntactic
adjustments are more easily captured by LLMs, as shown in Table 2.
The best results were achieved under the Chain-of-Thought strategy,
with 64 (27.46%) migrations performed successfully for both models.
In contrast, the results vary more in Complex migrations. While
Claude Sonnet was able to provide proper answers for 44 of the
migration scenarios (Zero-shot), GPT-40 achieved its best (One-
Shot and Chain-of-Thought). Nevertheless, both models struggled
to preserve test logic structures such as fixtures and mocks.

4.1.5 ByProject. Lastly, Table 3 summarizes the results by project.
We detail the number of analyzed migrations, the distribution be-
tween simple and complex migrations, the total number of test
executions—based on the 480 migration requests—and the percent-
age of successful outcomes.

The ansible/ansible project achieved the highest effectiveness,
with 168 (99.4%) of successful executions; all successful migrations
were classified as simple. Interestingly, redis/redis-py had a similar
number of simple migrations, but none of them executed success-
fully. The httpie/cli project obtained the second-best performance
(156, 83.3%). Finally, apache/airflow and ray-project/ray reported no
successful executions.

RQ1. Overall, 48.5% (233 out of 480) of all migrations executed
successfully. Chain-of-Thought yielded the best overall correct-
ness. Claude Sonnet 4 achieved slightly higher correctness than
GPT-40. Simple migrations presented higher success rates in both
models, but Claude Sonnet performed better in complex ones.

4.2 RQ2: Coverage in Test Migrations

In this RQ, we explore whether LLM-generated tests change the
test coverage as compared to the original migration. Changes in
test coverage may indicate that a correct but different test was
generated by the models.

We find that the coverage remained exactly the same for all
successful cases. For instance, ansible/ansible maintained 39%, cook-
iecutter/cookiecutter 33%, httpie/httpie 94%, and beetbox/beets 62.96%.
These results suggest that LLM-generated migrations effectively
reproduced the test behavior.

RQ2. Test coverage remained unchanged in successful migrations,
i.e., the LLM-generated migrations preserved the test behavior.

4.3 RQ3: Errors in Test Migrations

This RQ explores the 247 cases where LLM-generated migrations
failed to execute. We identified six major categories of errors across
such LLM-generated test migrations that failed to execute. These
categories are described below and represent distinct failure pat-
terns observed during the test execution:

o AssertionError: subtle changes that led to failed assertions,
such as rounding errors, string formatting changes, or dif-
ferent expected values.

Testing Framework Migration with Large Language Models

AST °26, April 13-14, 2026, Rio de Janeiro, Brazil

Table 4: Unsuccessful migrations by model, temperature, strategy, and difficulty.

GPT 40 Claude Sonnet 4
E /project Total
rror owner/projec Zero-shot One-shot Chain-of-Thought Zero-shot One-shot Chain-of-Thought o
0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
AssertionError ray-project/ray 1 1 1 1 1 1 1 1 1 1 1 1 12
Missing Fixtures httpie/httpie 0 0 1 1 0 0 0 0 1 1 0 0 4
Signature Drift beetbox/beets 3 3 2 3 3 2 0 0 1 1 0 0 18
Structural Mismatch cookiecutter/cookiecutter 3 3 1 1 1 1 1 1 2 2 2 2 20
SyntaxError ansible/ansible 0 0 1 0 0 0 0 0 0 0 0 0 1
apache/airflow, 3 3 3 3 3 3 3 3 3 3 3 3 36
TypeError redis/redis-py 13 13 13 13 13 13 13 13 13 13 13 13 156
Total 23 23 22 22 21 20 18 18 21 21 19 19 247

e Structural Mismatch: inconsistencies in the structural style
or test organization that caused failures in test discovery or
disrupted class-based dependencies.

e Missing Fixtures: missing references to fixtures, clients, or
variables used in the tests.

o TypeError: misuse of data types or interactions with unini-
tialized objects, frequently linked to absent mocks or clients.

e Signature Drift: undesired modifications in function signa-
tures, such as added, removed, or renamed parameters that
cause incompatibility with other test components.

e SyntaxError (Parse): malformed instructions in the code,
such as unbalanced parentheses, malformed try/except
blocks, or indentation issues.

Table 4 details the results per category. Across all executions, a
total of 247 failures were recorded out of 480 migrations, encom-
passing all combinations of models, prompting strategies, and tem-
perature settings. Among the 40 unique migrations, 25 experienced
at least one failure. When analyzing failures across configurations,
we observed that GPT-40 produced the highest number of failing
migrations under the Zero-shot strategy, while Claude Sonnet 4
did so under the One-shot strategy. Despite these variations, tem-
perature had virtually no influence on the outcome—error counts
remained identical between Deterministic (0.0) and Neutral (1.0)
temperatures for all strategies, except for a marginal difference of
one case in the Chain-of-Thought configuration for GPT-4o.

Interestingly, the number of errors reported by some types re-
mained the same regardless of the LLM setup. For example, the num-
ber of TypeError remained 13 between all configurations; similar
behavior happens with SyntaxError detected in apache/airflow and
AssertionError. In redis/redis-py, most errors were caused by miss-
ing dependencies and incorrect fixture substitutions, which led to
TypeError exceptions. Similarly, apache/airflow frequently failed
due to malformed control blocks (e.g., unbalanced try/except
statements), resulting in SyntaxError during module imports.

In contrast, ansible/ansible and httpie/httpie have more localized
failures, mainly caused by broken test discovery when migrated
functions were moved out of their original classes or lost their
fixture associations. Finally, in beetbox/beets and cookiecutter/cook-
iecutter, signature drift and inheritance modifications disrupted
shared setup routines, producing integration inconsistencies that
propagated across dependent tests.

RQ3. Overall, 51.5% (247 out of 480) of all migrations failed the
execution. They represent 25 out of the 40 unique migrations.
Most issues involved problems in handling dependencies, incor-
rect fixture usage, or inconsistencies in structural elements, such
as test setup and inheritance.

4.4 RQ4: Changes in Test Migrations

To guide this analysis, we organized the discussion into two perspec-
tives: (i) changes in code structure and (ii) duplicated migrations.

44.1 Changesin Code Structure. LLMs exhibited distinct struc-
tural changes when migrating tests from unittest to Pytest, as
detailed in Table 5. Overall, Claude Sonnet 4 presented a conserva-
tive migration style, preserving most of the original test code across
the multiple configurations. For example, Claude preserved class-
oriented organization in 70.83% of migrations and maintained refer-
ences to unittest in 33.75%. In contrast, GPT-40 performed more
substantial changes. Classes were preserved in 45% of the cases, the
unittest package is mentioned in 9.17% of the tests. Despite these
differences, both models fully removed unitttest self.assertx,
mostly adopting native Pytest assert.

Related to prompt strategies, we observe that the number of
classes declined substantially (Claude 49%, GPT 2.5%) when using
One-shot; the number of import pytest statements also increased
in this scenario. The Zero-shot, on the other hand, generated out-
puts structured and aligned with the original tests. Claude preserved
class structures in 100% of cases and GPT in 88%. Pytest’s advanced
commands are more present in migrations generated by the Chain-
of-Thougths strategy. Both GPT-40 and Claude achieved the highest
results for @pytest.fixture and pytest.raises() in migrations
performed using this prompt.

Temperature variation had a negligible impact on these trends.
Across all prompting settings, the difference between determin-
istic and neutral configurations remained below 2.5 p.p. for most
metrics. Nonetheless, the deterministic approach produced more
consistent code—presented lower variations in fixture usage and
import organization—whereas neutral generations introduced only
minor stylistic differences without semantic impact.

4.4.2 Duplicated Migrations. Overall, we identified 117 dupli-
cated migration groups, encompassing 348 variants (72.5% of all

AST °26, April 13-14, 2026, Rio de Janeiro, Brazil

Table 5: Code metrics before and after migration across models, prompts, and temperatures.

Altino Alves, Joao Eduardo Montandon, and Andre Hora

. import import . . assert LoC

Model Prompt Temp. Total class test Pytest unittest @pytest.fixture pytest.raises() self.assert (Pytest) (mean)
Code (before) - 40 100% 87.50% 7.50% 100% 0% 0% 85% 10% 25
Zero-shot 1.0 40 87.50% 90% 40% 10% 5% 15% 0% 77.50% 19
0.0 40 87.50% 90% 40% 7.50% 5% 15% 0% 85% 19
One-shot 1.0 40 2.50% 92.50% 100% 7.50% 22.50% 15% 0% 85% 19
GPT 4o 0.0 40 250% 90% 97.50% 7.50% 22.50% 15% 0% 85% 19
CoT 1.0 40 42.50% 92,50% 87.50% 12,50% 32.50% 17.50% 0% 87.50% 20
0.0 40 47.50% 90% 90% 10% 30% 17.50% 0% 85% 20
Total 240 45% 90.83% 75.83% 9.17% 19.58% 15.83% 0% 84.17% 19
Zero-shot 1.0 40 100% 90% 40% 20% 0% 15% 0% 85% 19
0.0 40 100% 90% 42.50% 17.50% 0% 15% 0% 85% 19
Claude One-shot 1.0 40 50% 90% 95% 45% 7.50% 15% 0% 85% 20
Sonnet 4 0.0 40 47.50% 90% 92.50% 35% 7.50% 15% 0% 85% 20
CoT 1.0 40 65% 90% 80% 42.50% 7.50% 15% 0% 85% 19
0.0 40 62.50% 90% 82.50% 42.50% 12.50% 17.50% 0% 85% 19
Total 240 70.83% 90% 72.08% 33.75% 5.83% 15.42% 0% 85% 19

generated migrations). Each group represents a set of identical mi-
gration outputs produced under different model or configuration
settings, while variants refer to the individual instances within
those groups. This highlights a marked convergence in model be-
havior, where different configurations frequently result in identical
code generations. As shown in Table 6, Claude Sonnet 4 exhibited
the highest degree of redundancy, with 89.17% of its variants being
identical across at least one configuration, compared to 55.83% for
GPT-40. At the prompt level, Claude maintained near-deterministic
behavior, reaching duplication rates of 92.50% under Zero-shot, 90%
under One-shot, and 85% under Chain-of-Thought. In contrast, GPT
produced more diverse and variable generations, with duplication
ranging from 67.50% in Zero-shot to 45% in Chain-of-Thought.

Table 6: Duplicated migrations.

Model Prompt Temp. Total Duplications
Zero-Shot 0.0 40 26
1.0 40 27
GPT 40 One-Shot 0.0 40 23
1.0 40 22
Chain-of-Thought 0.0 40 18
1.0 40 18
Zero-Shot 0.0 40 37
1.0 40 37
Claude Sonnet 4 One-Shot 0.0 40 36
1.0 40 36
Chain-of-Thought 0.0 40 34
1.0 40 34
Total 480 328

Temperature variation had minimal impact on duplication rates.
Claude’s outputs remained nearly identical across the precise (88.33%)
and neutral (90%) configurations, while GPT consistently produced
around 55.83% duplicates in both. These observations suggest that
prompt design—rather than temperature—plays the dominant role
in driving convergence among generated code variants.

RQ4. Claude Sonnet 4 preserved class-based structures and
unittest elements, while GPT-40 favored function-based
rewrites with Pytest elements. Duplicated migrations were fre-
quent, revealing convergence toward stable migration templates,
especially for Claude (up to 92.50%).

5 Discussion and Implications

LLMs underperformed the migration of complex cases. Both
models achieved consistent results in simple migrations, but their
performance declined in complex scenarios. While 51% of simple
migrations were executed successfully, this performance drops to
40% when considering only complex ones (RQ1). We believe that
these failures are primarily due to the models’ limited capacity to
analyze the architectural aspects of the tests being migrated. For
example, most execution failures involved incorrect fixtures and
test setup. This behavior was also noticed in other works, where
LLMs struggle to find the correct outcome in larger scenarios [52].

Temperature setup did not impact the migrations. Despite
being theoretically designed to influence creativity and exploration,
temperature had minimal impact on the migration outcomes. As
observed in RQ1, both models produced almost identical structural
outcomes across all configurations, i.e., they produced the same set
of successful tests independent of migration difficulty or prompt
strategy. Similar behavior is also noted for failed tests (RQ3); a
higher temperature value did not help the LLMs to overcome with
an alternative solution that was correct. These findings emphasize

Testing Framework Migration with Large Language Models

that, for local code transformation tasks, prompt design and access
to relevant project context have more influence on outcome quality
than random variation in model outputs [18, 19].

No prompt configuration outperformed the others. Across
all prompt strategies, no configuration consistently outperformed
the others. As observed in RQ1, while Chain-of-Thought occasion-
ally produced slightly more structured migrations, the differences
were minimal. Despite the variations in prompting strategy, both
models frequently generated correct migrations for similar scenar-
ios, indicating a strong dependency on common transformation
patterns. Once a migration pattern is explicitly mentioned—such as
converting setUp() to @pytest.fixture—the LLMs started using
it with more frequency [13, 18]. By contrast, adding a source code
example can occasionally introduce some bias to the migration
process. This happens with the One-shot prompt configuration,
where it consistently added the same fixture-based setup pattern
from the provided example—particularly inserting unnecessary
@pytest. fixture functions even in tests that did not originally
rely on shared fixtures. This suggests that source code examples
can constrain the LLMs capacity to provide a more diverse output.

Migration executions failed mostly due to context-sensitive
instructions, such as fixtures and test setup. Most of the execu-
tion failures observed in RQ3 originated from missing dependencies
that were not explicitly represented in the test files. While the LLMs
successfully translated the syntax from unittest to Pytest, they
frequently ignored the relationship between fixtures, setup routines,
and external components to the tests under migration. For instance,
in redis/redis-py, fixture-based clients were replaced with direct
object instantiations (e.g., redis.StrictRedis()), breaking the
controlled initialization of shared Redis connections and resulting
in TypeError exceptions. Other failures, however, stemmed from
structural and semantic inconsistencies rather than missing de-
pendencies: in apache/airflow, malformed control structures—such
as unbalanced try/except blocks—caused syntax errors during
import, while in ray-project/ray, subtle rounding precision mis-
matches produced false AssertionError failures. In either case,
we found no LLM setup able to fix these changes, suggesting addi-
tional information is needed to properly detect and fix these errors.
These findings highlight the need for approaches that incorporate
detailed, fine-grained information about the test environment, al-
lowing LLMs to understand and leverage contextual relationships
among test components.

Advanced commands are used only if explicitly mentioned
in the prompt. As shown in RQ4, both models rarely applied ad-
vanced Pytest features unless explicitly mentioned in the prompt.
Even though Pytest supports richer constructs, such as param-
eterization, for example, the models typically performed direct
one-to-one transformations from unittest, avoiding higher-level
abstractions. In other words, the models favor a conservative trans-
formation over a more idiomatic one, even when these could lead
to more maintainable test suites. This behavior is consistent with
previous studies showing that LLMs focus on reproducing familiar
syntax instead of fully understanding and applying the deeper se-
mantics of the target framework [18, 19]. The effective automation
of testing framework migrations passes by adopting techniques to

AST °26, April 13-14, 2026, Rio de Janeiro, Brazil

encourage the model to generate more idiomatic outcomes, such
as guided prompts and finetuning strategies [28, 50].

6 Threats to Validity

Internal Validity. Although all projects were executed in a con-
trolled environment, different dependencies’ versions or project
configurations could still influence the results. Also, the non deter-
ministic behavior of LLMs may cause slight variations in outputs
between executions. To mitigate this, we used fixed prompts, tem-
perature settings, and the number of executions for each LLM.

Construct Validity. A threat to construct validity arises from
how migration success was defined and measured. Execution and
coverage preservation are practical indicators of correctness but
do not capture all aspects of test quality. A migrated test may
still pass while behaving differently when integrated into the full
suite. To mitigate this, all migrations were executed in real project
environments, using coverage as an additional quality measure to
reduce false positives—cases where tests pass but fail to preserve
their original intent.

External Validity. The external validity of our findings is con-
strained by two main factors. First, we isolated the migration from
other changes performed on the system. Second, we analyzed a lim-
ited number of models and projects. To mitigate these, we selected
widely adopted open-source projects and validated migrations in
real execution environments, ensuring that the evaluated scenarios
reflect realistic development settings.

Conclusion Validity. We relied on the execution of the migrated
tests to analyze the performance of LLMs. Although all migrations
were executed under controlled local environments, minor changes
in dependencies or package versions could have influenced individ-
ual outcomes. We rebuild the projects from their verified releases
and executed them multiple times to ensure stability and repro-
ducibility of results.

7 Related Work

Library and framework evolution and migration are research topics
largely explored by the literature in multiple ecosystems [4, 10, 11,
26, 31, 33, 34, 37, 39, 45, 48, 49, 56, 58]. In the context of testing
framework migration, Barbosa and Hora [4] empirically explored
how developers migrate Python tests from unittest to Pytest. The
authors detect that multiple popular Python projects migrated to
Pytest. In many cases, the migration was not simple, taking a long
period to conclude or never concluded at all.

Recently, Large Language Models (LLMs) have been adopted
in multiple software engineering tasks, including generating tests,
refactoring, fixing bugs, and supporting code review [1, 2, 16, 20,
22, 24, 27, 36, 38, 50, 54]. Di Rocco et al. proposed DeepMig, a
transformer-based approach to support coupled library and code
migrations in Java [16]. The research presents promising results,
showing that DeepMig is able to recommend both libraries and
code; in several projects with a perfect match. Almeida et al. pro-
vided an initial study to explore automatic library migration using
LLMs [1]. Specifically, with the support of GPT-40, the authors
migrated a client application to a newer version of SQLAlchemy,
a Python Object-Relational Mapping (ORM) library. The study

AST °26, April 13-14, 2026, Rio de Janeiro, Brazil

presents promising results, concluding that LLMs can correctly
migrate the project with only minor mistakes. Our research con-
tributes to the literature with a novel solution based on LLMs to
support testing framework migration.

8 Conclusion

Our study analyzed how Large Language Models perform auto-
mated test migrations from unittest to Pytest. Across 40 isolated
migrations using GPT-4o0 and Claude Sonnet 4, with three prompt-
ing strategies (Zero-shot, One-shot, and Chain-of-Thought) and two
temperature settings (0.0 — deterministic and 1.0 — neutral), LLMs
achieved an overall 48.54% effectiveness rate. This effectiveness
was validated through real executions on 7 of the top 100 Python
open-source projects on GitHub, showing that even under isolated,
context-free conditions, LLM-generated migrations can maintain
partial functionality in real-world software environments.

Despite this potential, several challenges remain. Both models
often struggled with structural coherence, fixture adaptation, and
dependency management. Claude Sonnet 4 exhibited a conservative
migration style—preserving class-based architectures and legacy
unittest references, while GPT-40 favored more transformations
toward function-oriented and fixture-driven designs. Prompt strat-
egy emerged as a key factor: One-shot and Chain-of-Thoughts im-
proved syntactic modernization but reduced architectural fidelity.
Temperature variation, however, had a negligible impact on results.

Finally, future work may explore (i) test migrations performed
by coding agents, which can perform software testing tasks au-
tonomously [25, 32, 46], (ii) contribution studies [9, 15, 23] to evalu-
ate developer acceptance by submitting LLM-migrated tests as pull
requests to open-source projects, (iii) a deeper assessment of the
quality of LLM-migrated tests in comparison to manually migrated
ones, and (iv) analysis on large, industry-grade repositories that
rely on advanced Pytest features.

Acknowledgments

This research was supported by CNPq (process 403304/2025-3),

CAPES, and FAPEMIG. This work was partially supported by INES.IA
(National Institute of Science and Technology for Software Engi-

neering Based on and for Artificial Intelligence), www.ines.org.br,

CNPq grant 408817/2024-0.

References

[1] Aylton Almeida, Laerte Xavier, and Marco Tulio Valente. 2024. Automatic Li-
brary Migration Using Large Language Models: First Results. In International
Symposium on Empirical Software Engineering and Measurement. 1-7.

Nadia Alshahwan, Jubin Chheda, Anastasia Finogenova, Beliz Gokkaya, Mark

Harman, Inna Harper, Alexandru Marginean, Shubho Sengupta, and Eddy Wang.

2024. Automated unit test improvement using large language models at meta. In

International Conference on the Foundations of Software Engineering. 185-196.

[3] Altino Alves and Andre Hora. 2025. TestMigrationsInPy: A Dataset of Test
Migrations from Unittest to Pytest. In International Conference on Mining Software
Repositories. IEEE, 841-845.

[4] Livia Barbosa and Andre Hora. 2022. How and why developers migrate Python
tests. In International Conference on Software Analysis, Evolution and Reengineering.
538-548.

[5] Ali Bayram, Gonca Gokce Menekse Dalveren, and Mohammad Derawi. 2025.
Comparative Analysis of AI Models for Python Code Generation: A HumanEval
Benchmark Study. Applied Sciences 15, 18 (2025), 9907.

[6] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. 2021. On the dangers of stochastic parrots: Can language mod-

els be too big?. In ACM Conference on fairness, accountability, and transparency.
610-623.

[2

7

(8]

(10]

—_
o

(17

(18

[19

[27]

[28

Altino Alves, Joao Eduardo Montandon, and Andre Hora

Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding
the Factors that Impact the Popularity of GitHub Repositories. In International
Conference on Software Maintenance and Evolution (ICSME). 334-344.

Mohamed Boukhlif, Nassim Kharmoum, and Mohamed Hanine. 2024. Llms for
intelligent software testing: a comparative study. In International Conference on
Networking, Intelligent Systems and Security. 1-8.

Carolin Brandt, Ali Khatami, Mairieli Wessel, and Andy Zaidman. 2024. Shaken,
Not Stirred. How Developers Like Their Amplified Tests. IEEE Transactions on
Software Engineering (2024).

Aline Brito, Marco Tulio Valente, Laerte Xavier, and Andre Hora. 2020. You broke
my code: understanding the motivations for breaking changes in APIs. Empirical
Software Engineering 25 (2020), 1458-1492.

Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. 2018. On
the use of replacement messages in API deprecation: An empirical study. Journal
of Systems and Software 137 (2018), 306-321.

Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and Shengxin Zhu. 2025. Un-
leashing the potential of prompt engineering for large language models. Patterns
(2025).

Wentao Chen, Lizhe Zhang, Li Zhong, Letian Peng, Zilong Wang, and Jingbo
Shang. 2025. Memorize or generalize? evaluating LLM code generation with
evolved questions. arXiv preprint arXiv:2503.02296 (2025).

Coverage.py. January, 2026. https://coverage.readthedocs.io.

Benjamin Danglot, Oscar Luis Vera-Pérez, Benoit Baudry, and Martin Monperrus.
2019. Automatic test improvement with DSpot: a study with ten mature open-
source projects. Empirical Software Engineering 24 (2019), 2603-2635.

Juri Di Rocco, Phuong T Nguyen, Claudio Di Sipio, Riccardo Rubei, Davide
Di Ruscio, and Massimiliano Di Penta. 2025. DeepMig: A transformer-based
approach to support coupled library and code migrations. Information and
Software Technology 177 (2025), 107588.

Martin Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane
Ducasse. 2015. Untangling fine-grained code changes. In International Conference
on Software Analysis, Evolution, and Reengineering. IEEE, 341-350.

Yihong Dong, Yuchen Liu, Xue Jiang, Zhi Jin, and Ge Li. 2025. Rethinking
Repetition Problems of LLMs in Code Generation. arXiv preprint arXiv:2505.10402
(2025).

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen,
Jiayi Feng, Chaofeng Sha, Xin Peng, and Yiling Lou. 2024. Evaluating large
language models in class-level code generation. In International Conference on
Software Engineering. 1-13.

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta,
Shin Yoo, and Jie M Zhang. 2023. Large Language Models for Software Engineer-
ing: Survey and Open Problems. arXiv preprint arXiv:2310.03533 (2023).
Tianchen Gao, Jiashun Jin, Zheng Tracy Ke, and Gabriel Moryoussef. 2025. A
comparison of deepseek and other LLMs. arXiv preprint arXiv:2502.03688 (2025).
Roar Elias Georgsen. 2023. Beyond Code Assistance with GPT-4: Leveraging GitHub
Copilot and ChatGPT for Peer Review in VSE Engineering. Technical Report.
EasyChair.

Andre Hora. 2024. PathSpotter: Exploring Tested Paths to Discover Missing Tests.
In International Conference on the Foundations of Software Engineering. 647-651.
Andre Hora. 2024. Predicting Test Results without Execution. In International
Conference on the Foundations of Software Engineering. 542—546.

Andre Hora and Romain Robbes. 2026. Are Coding Agents Generating Over-
Mocked Tests? An Empirical Study. In International Conference on Mining Software
Repositories (MSR 2026). In press.

Andre Hora, Romain Robbes, Nicolas Anquetil, Anne Etien, Stéphane Ducasse,
and Marco Tulio Valente. 2015. How do developers react to api evolution? the
pharo ecosystem case. In International Conference on Software Maintenance and
Evolution. IEEE, 251-260.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,
David Lo, John Grundy, and Haoyu Wang. 2023. Large language models for
software engineering: A systematic literature review. ACM Transactions on
Software Engineering and Methodology (2023).

Cristina Improta, Rosalia Tufano, Pietro Liguori, Domenico Cotroneo, and
Gabriele Bavota. 2025. Quality In, Quality Out: Investigating Training Data’s
Role in AI Code Generation. In 33rd International Conference on Program Com-
prehension (ICPC). 454-465.

Md Mohayeminul Islam, Ajay Kumar Jha, May Mahmoud, Ildar Akhmetov, and
Sarah Nadi. 2025. An Empirical Study of Python Library Migration Using Large
Language Models. arXiv:2504.13272 [cs.SE] https://arxiv.org/abs/2504.13272
JetBrains: Python Developers Survey 2024 Results. January, 2026.
https://lIp.jetbrains.com/python-developers-survey-2024.

Maxime Lamothe, Yann-Gaél Guéhéneuc, and Weiyi Shang. 2021. A systematic
review of API evolution literature. ACM Computing Surveys (CSUR) 54, 8 (2021),
1-36.

Hao Li, Haoxiang Zhang, and Ahmed E Hassan. 2025. The Rise of AI Teammates in
Software Engineering (SE) 3.0: How Autonomous Coding Agents Are Reshaping
Software Engineering. arXiv preprint arXiv:2507.15003 (2025).

https://arxiv.org/abs/2504.13272
https://arxiv.org/abs/2504.13272

Testing Framework Migration with Large Language Models

[33]

[34]

[35]

[36]

@
=

[38

[39]

[40]
[41]
[42]

[43]

[44

[45

[46]

Jun Li, Yingfei Xiong, Xuanzhe Liu, and Lu Zhang. 2013. How does web service
API evolution affect clients?. In International Conference on Web Services. IEEE,
300-307.

Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2018.
Characterising deprecated android apis. In International Conference on Mining
Software Repositories (MSR). 254-264.

Lujun Li, Lama Sleem, Niccolo’ Gentile, Geoffrey Nichil, and Radu State. 2025.
Exploring the Impact of Temperature on Large Language Models: Hot or Cold?
arXiv preprint arXiv:2506.07295 (2025).

Jenny T Liang, Carmen Badea, Christian Bird, Robert DeLine, Denae Ford, Nicole
Forsgren, and Thomas Zimmermann. 2023. Can GPT-4 Replicate Empirical
Software Engineering Research? arXiv preprint arXiv:2310.01727 (2023).

Brian A Malloy and James F Power. 2019. An empirical analysis of the transition
from python 2 to python 3. Empirical Software Engineering 24 (2019), 751-778.
Mauricio Monteiro, Bruno Castelo Branco, Samuel Silvestre, Guilherme Avelino,
and Marco Tulio Valente. 2023. End-to-End Software Construction using Chat-
GPT: An Experience Report. arXiv preprint arXiv:2310.14843 (2023).

Romulo Nascimento, Eduardo Figueiredo, and Andre Hora. 2021. JavaScript API
deprecation landscape: A survey and mining study. IEEE Software 39, 3 (2021),
96-105.

OpenAl 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

Pytest. January, 2026. https://docs.pytest.org.

Rudolf Ramler, Philipp Straubinger, Reinhold Plésch, and Dietmar Winkler. 2025.
Unit Testing Past vs. Present: Examining LLMs’ Impact on Defect Detection and
Efficiency. arXiv preprint arXiv:2502.09801.

Matthew Renze. 2024. The effect of sampling temperature on problem solving in
large language models. In Findings of the association for computational linguistics:
EMNLP 2024. 7346-7356.

Madelon Renze and Eren Guven. 2024. The Effect of Sampling Temperature
on Problem Solving in Large Language Models. Findings of the Association for
Computational Linguistics: EMNLP 2024 (2024). https://arxiv.org/abs/2402.05201
Romain Robbes, Mircea Lungu, and David Réthlisberger. 2012. How do developers
react to API deprecation? The case of a Smalltalk ecosystem. In International
Symposium on the Foundations of Software Engineering. 1-11.

Romain Robbes, Théo Matricon, Thomas Degueule, Andre Hora, and Stefano
Zacchiroli. 2026. Promises, Perils, and (Timely) Heuristics for Mining Coding
Agent Activity. In International Conference on Mining Software Repositories (MSR
2026). In press.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal,
and Aman Chadha. 2024. A systematic survey of prompt engineering in large
language models: Techniques and applications. arXiv preprint arXiv:2402.07927

AST °26, April 13-14, 2026, Rio de Janeiro, Brazil

(2024).

Anand Ashok Sawant, Guangzhe Huang, Gabriel Vilen, Stefan Stojkovski, and
Alberto Bacchelli. 2018. Why are features deprecated? an investigation into the
motivation behind deprecation. In International Conference on Software Mainte-
nance and Evolution. IEEE, 13-24.

Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. 2019. To react,
or not to react: Patterns of reaction to API deprecation. Empirical Software
Engineering 24 (2019), 3824-3870.

Max Schéfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. An empirical
evaluation of using large language models for automated unit test generation.
IEEE Transactions on Software Engineering (2023).

Hudson Silva and Marco Tulio Valente. 2018. What’s in a GitHub Star? Under-
standing Repository Starring Practices in a Social Coding Platform. Journal of
Systems and Software 146 (2018), 112-129.

Luciana Lourdes Silva, Janio Rosa da Silva, Jodo Eduardo Montandon, Marcus
Andrade, and Marco Tulio Valente. 2024. Detecting code smells using chatgpt:
Initial insights. In International Symposium on Empirical Software Engineering
and Measurement. 400-406.

Yasuaki Sumita, Koh Takeuchi, and Hisashi Kashima. 2025. Cognitive Biases
in Large Language Models: A Survey and Mitigation Experiments (SAC °25).
Association for Computing Machinery, New York, NY, USA, 1009-1011. doi:10.
1145/3672608.3707812

Michele Tufano, Shubham Chandel, Anisha Agarwal, Neel Sundaresan, and Colin
Clement. 2023. Predicting Code Coverage without Execution. arXiv preprint
arXiv:2307.13383 (2023).

Unittest. January, 2026. https://docs.python.org/3/library/unittest.html.

Jiawei Wang, Li Li, Kui Liu, and Haipeng Cai. 2020. Exploring how deprecated
Python library APIs are (not) handled. In Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
233-244.

[57] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,

Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems 35
(2022), 24824-24837.

Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. 2017. Historical
and impact analysis of API breaking changes: A large-scale study. In International

Conference on Software Anallzysis, Evolution and Reengineering (SANER). 138-147.
Yuqi Zhu, Jia Li, Ge Li, YunFei Zhao, Zhi Jin, and Hong Mei. 2024. Hot or cold?

adaptive temperature sampling for code generation with large language models.
In AAAI Conference on Artificial Intelligence, Vol. 38. 437-445.

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2402.05201
https://doi.org/10.1145/3672608.3707812
https://doi.org/10.1145/3672608.3707812

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Study Design
	3.1 Overview
	3.2 Case Study
	3.3 Detecting Migrations from Unittest to Pytest
	3.4 Extracting Isolated Migrations
	3.5 Detection of Current Available Migrations
	3.6 Classifying Migration Difficulty
	3.7 LLMs Setup
	3.8 Evaluation of the LLM-Migrated Tests
	3.9 Research Questions

	4 Results
	4.1 RQ1: Correctness of Test Migrations
	4.2 RQ2: Coverage in Test Migrations
	4.3 RQ3: Errors in Test Migrations
	4.4 RQ4: Changes in Test Migrations

	5 Discussion and Implications
	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

